
14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 1 

Network Reliability Analysis and Complexity Quantification 

Using Bayesian Network and Dual Representation 

Dongkyu Lee 
Graduate Student, Dept. of Civil and Environmental Engineering, Seoul National University, Seoul, S. 

Korea 

Ji-Eun Byun 
Lecturer, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom 

Junho Song 
Professor, Dept. of Civil and Environmental Engineering, Seoul National University, Seoul, S. Korea 

Kayvan Sadeghi 
Associate Professor, Dept. of Statistical Science, University College London, London, United Kingdom 

ABSTRACT: Critical roles of lifeline networks in modern societies, e.g., electricity or water distribution, 

transportation, make it essential to accurately assess their reliability. However, existing network 

reliability analysis (NRA) methods struggle to handle large-scale networks because the computational 

complexity increases rapidly with the number of components. To address such scalability issues, we 

propose a new NRA method that builds Bayesian network (BN) and junction tree models using the dual 

representation of a given network. The proposed method has three main advantages: (1) accurate and fast 

evaluation of the connectivity of large-scale networks; (2) straightforward implementation by existing 

BN algorithms; and (3) quantitative prediction of NRA complexity for various network topologies. We 

demonstrate the effectiveness and accuracy of the proposed method by quantifying the complexity of 

typical topologies and evaluating the reliability of a real-world network. 

1. INTRODUCTION 

Modern society operates on various lifeline 

networks such as transportation networks, power 

networks, and gas distribution networks. A 

mathematical network model represents such a 

system in performance or reliability analyses by 

sets of vertices and arcs. Vertices represent node-

type components such as intersections or 

substations, while arcs represent line-type 

components such as roads or pipelines. To secure 

reliable operation of lifeline networks, it is critical 

to evaluate their reliability against potential risks, 

e.g., catastrophic events. While there are various 

definitions of network performance, this paper 

focuses on the connectivity of an origin-

destination (O-D) pair. In other words, the system 

failure probability is the probability that there is 

no path between a given O-D pair. 

To calculate the exact failure probability of a 

network consisting of 𝑁  arcs, the probabilistic 

analysis needs to be performed over an 𝑁 

dimensional probability distribution. Since the 

size of such a distribution grows exponentially 

with the number of components, 𝑁, a complete 

quantification of these distributions becomes 

infeasible even for a moderate number of 

components (typically, 𝑁 ≥ 30). To address such 

limitations, various sampling-based methods have 

been proposed. However, such an approach is 

computationally inefficient when the failure 

probability is low. Another limitation of the 

sampling-based approach is that a new analysis 

should be performed to update the failure 

probabilities based on available information or 

evidence. 

To overcome the limitations discussed above, 

we propose an efficient reliability analysis 
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method for network systems where the failure 

event is defined as the disconnection of an O-D 

pair of interest. The main idea is that, by 

employing a Bayesian network (BN), we separate 

the modeling of structural failures and functional 

failures of network components (i.e., edges and/or 

nodes). Thereby, the analysis complexity depends 

not only on the network size (i.e., the number of 

component events), but also on the network 

topology. Once a BN model is established, one 

can utilize existing BN inference algorithms to 

carry out reliability analysis. 

The advantages of the proposed method are 

three-fold. First, the method can compute the 

exact failure probability of large-scale networks 

that were previously considered to be too large for 

an exact analysis. Second, existing BN algorithms 

that are readily available in general-purpose 

software programs facilitate implementation. 

Finally, the method enables us to quantify the 

complexity of network topology from the 

perspective of reliability analysis, which remains 

as an unresolved task. 

In this paper, only arc failures are considered. 

It is noted that this is not necessarily a limitation 

since it is straightforward to modify the proposed 

method to consider node failures (Ball et al. 1995). 

Also, the proposed method requires that a given 

network has no directed cycle, which is a 

fundamental requirement for BNs. 

The paper is organized as follows. Section 2 

summarizes the background theories of BN and 

JT and introduces the concept of dual 

representation of networks. Section 3 proposes a 

new NRA method based on BN and dual graphs. 

In Section 4, the proposed method is applied to the 

NRA, and the network complexity is quantified in 

terms of the number of arcs in various network 

topologies. Then, a large-scale transportation 

network is analyzed as a numerical example to 

demonstrate the efficiency and usefulness of the 

proposed method in Section 5. Finally, the 

conclusions and future work are presented in 

Section 6. 

2. BACKGROUND 

2.1. Bayesian network 

A BN is one of the probabilistic graphical models 

(PGMs) that visualize directional dependence 

between random variables (r.v.’s). A BN is 

represented by a directed acyclic graph (DAG), 

𝐺(𝑵, 𝑬),  where 𝑵  and 𝑬  denote a set of nodes 

that stand for r.v.’s and a set of directed edges that 

represent statistical or causal dependencies 

between a node pair, respectively. When an edge 

points from node 𝑁𝑖  to node 𝑁𝑗 , they are called 

parent and child nodes, respectively. 

Once a BN graph is set up, each node 𝑁𝑖 ∈ 𝑵 

needs to be quantified by a probability distribution 

being conditioned on its parent nodes 𝑃𝑎(𝑁𝑖), i.e., 

𝑃(𝑁𝑖|𝑃𝑎(𝑁𝑖)).  Then, the joint probability 

distribution 𝑃(𝑵),  represented by a BN graph, 

becomes a product of the conditional probabilities 

of all nodes, i.e., 

𝑃(𝑵) = ∏ 𝑃(𝑁𝑖|𝑃𝑎(𝑁𝑖)).

𝑁𝑖∈𝑵

 (1) 

The equation above shows how a BN factorizes a 

full joint distribution 𝑃(𝑵)  into lower-

dimensional distributions 𝑃(𝑁𝑖|𝑃𝑎(𝑁𝑖)),  which 

can significantly reduce the memory required to 

store distributions. In other words, a BN enables 

efficient modeling of a high-dimensional 

probability distribution by visualizing conditional 

independence between r.v.’s.  

BNs have a few limitations. As the number 

of parent nodes increases, the memory required to 

store the conditional probability 𝑃(𝑁𝑖|𝑃𝑎(𝑁𝑖)) 

grows exponentially. In other words, given too 

many parent nodes, it becomes infeasible to 

quantify a BN. Another limitation is that a BN 

graph must not have any directed cycle, which 

limits the class of problems that can be handled by 

the BN methodology. 

2.2. Junction tree algorithm 

A junction tree (JT) is a graphical method that 

enables a structured way for inferring a BN model. 

A BN graph can be transformed into a JT graph, 

for which multiple general-purpose algorithms are 

available for computing marginal probabilities 
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(Barber 2012). Once a JT graph is constructed, 

one can perform probabilistic inference by 

passing messages (which are in the form of 

probability distributions) between the cliques in 

the tree. This message-passing process is 

equivalent to distributing and combining local 

probability information across a JT graph. After 

updating the message of all cliques, one can 

compute the marginal probability distribution of 

any r.v. by visiting a clique that the r.v. of interest 

belongs to. 

JT models are advantageous for inferring BN 

models especially because of accessible computer 

programs that can handle the whole analysis 

process of a JT model. In this paper, we use the 

BRML toolkit by Barber (2012). 

2.3. Dual graph 

A dual representation of a network converts arcs 

and nodes from a primal (i.e., original) network. 

In other words, in a dual network, arcs in a primal 

network become nodes, and node pairs are 

connected if their corresponding arcs are directly 

connected in a primal network. Such alternative 

representation often reveals hidden properties of a 

network that do not appear apparent in a primal 

network (Porta et al. 2006). 

3. PROPOSED NRA METHOD: BUILDING 

BAYESIAN NETWORK USING DUAL 

GRAPH  

3.1. Procedures of the proposed method 

We propose a new NRA method that utilizes BN 

and dual graphs. Advantages of the proposed 

method are two-fold: (1) the method can evaluate 

the reliability of networks whose exact solution 

was previously considered unattainable, and (2) 

the computational complexity of an arbitrary 

network can be quantified from the perspective of 

NRA. 

Figure 1 illustrates a summary of the 

proposed procedure. First, one simplifies a target 

network by eliminating components that are not 

connected to an O-D pair of interest. Then, a BN 

graph is built by using a dual representation of the 

simplified network. Next, the BN graph is 

transformed into a JT graph, for which a message-

passing is scheduled; this can be done by 

employing one of the existing JT algorithms. 

 

 
Figure 1: Flowchart of the proposed NRA method. 

 

The final JT model can be used for two 

purposes: (1) quantifying the computational 

complexity of NRA and (2) performing NRA. The 

following subsections explains each step in detail. 

3.2. Step 1: Preprocess–network simplification 

Especially when dealing with large-scale 

networks, quite a large proportion of vertices may 

be unreachable from the origin or to the 

destination. Such vertices unnecessarily 

complicate NRA. Therefore, the proposed method 

first removes those vertices and the arcs 

connected thereto, which can be identified by any 

basic algorithm used for connectivity analysis. 

From numerical experiments, we found that this 

strategy greatly improves the efficiency of the 

proposed algorithm.  

This preprocess is not mandatory. Even if 

this is omitted, unnecessary nodes can be 

eliminated through marginalization during the 

message-passing in a JT graph. However, with the 

proposed preprocess, computation becomes much 

more efficient than with marginalization. 

Especially in random networks that often have 
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many isolated components from an O-D pair, this 

strategy enables one to solve problems that seem 

intractable in their original forms. 

3.3. Step 2: BN construction using dual graph 

The method builds a BN, in which nodes represent 

components that can fail. Then, a directed edge is 

created for each pair of nodes whose 

corresponding arcs are connected in the target 

network. Since this study considers arc failures 

only, the resulting BN has a topology equivalent 

to the dual representation of a target network.  

For example, consider an example network in 

Figure 2, which consists of 4 vertices (blue circles) 

and 5 directed arcs (green arrows). The origin and 

destination vertices are marked in the figure. Then, 

using the dual representation, the corresponding 

BN can be constructed as in Figure 3. In the BN, 

𝑇1, … , 𝑇𝑁 , (in this case, 𝑁 = 5) is a binary r.v., 

which takes state 1 if the head of arc 𝑖 is reachable 

from the origin vertex and 0, otherwise. 𝑆  is a 

binary r.v. whose state becomes 1 if the 

destination vertex can be reached from the origin 

vertex, and 0, otherwise. While conditional 

probability tables (CPTs) of 𝑇𝑖 will be discussed 

in Section 3.5, the CPT of 𝑆  is constructed as 

Table 1 (Byun and Song 2021a). 

 

 
Figure 2: Example network. 

 

 
Figure 3: BN graph for the NRA of the example 

network. 

Table 1: CPT of 𝑆 given 𝑇1, … , 𝑇𝑁 . 

𝑷(𝑺|𝑻𝟏, … , 𝑻𝑵) 𝑺 = 𝟏 𝑺 = 𝟎 

∑ 𝑻𝒊

𝑻𝒊∈𝑷𝒂(𝑺)

≥ 𝟏 1 0 

∑ 𝑻𝒊

𝑻𝒊∈𝑷𝒂(𝑺)

= 𝟎 0 1 

 

The proposed method is applicable only to 

maximum flow analysis (for which connectivity 

analysis is a special case). This is because the 

method achieves efficiency by exploiting 

conditional independence between arcs that are 

not directly connected; that is, the connectivity 

status of an arc (from an origin vertex) is 

independent to the status of other vertices when 

the status of directly connected arcs is known. For 

instance, in the BN graph in Figure 3, the 

connectivity of arc 5 to the origin vertex is 

independent to arcs 1 and 4, being conditioned on 

the connectivity of arcs 2 and 3. 

Such conditional independence may not hold 

for other types of analysis. For example, in a 

traffic simulation analysis, traffic is sequentially 

assigned by referring to traffic flows on both 

preceding and succeeding arcs. 

3.4. Step 3: JT construction and message-

passing scheduling 

For probabilistic inference, a BN graph 

constructed in Section 3.3 can be used to build a 

JT graph. This can be done automatically using 

existing algorithms such as the maximum weight 

spanning tree algorithm (Barber 2012). Once a JT 

graph is constructed, message-passing can be 

scheduled, for which several algorithms can be 

used (Barber 2012). 

For example, for the BN graph in Figure 3, a 

JT graph can be constructed as in Figure 4. Then, 

a message-passing schedule is obtained as 1 → 3, 
2 → 3, and 3→ 4.  
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Figure 4: JT graph corresponding to Figure 3. 

3.5. Step 4: Addition of component events 

The nodes 𝑇𝑖  represent a topology-based 

perspective of NRA. In addition, one needs to 

include r.v.’s to represent the states of component 

events, denoted as 𝑋𝑖, i.e., 𝑋𝑖  represents whether 

arc 𝑖  is functional (𝑋𝑖 = 1)  or not (𝑋𝑖 = 0).  By 

construction, 𝑋𝑖 becomes a parent node of 𝑇𝑖 for 

each 𝑖 = 1, … , 𝑁.  Then, the CPT of 𝑇𝑖  can be 

constructed as shown in Table 2 if arc 𝑖 is directly 

connected to the origin node. One can use CPT in 

Table 3 if arc 𝑖 is reachable from the origin node 

but not directly connected to it. 

 
Table 2: CPT of 𝑇𝑖 given 𝑋𝑖. 

𝑷(𝑻𝒊|𝑿𝒊) 𝑻𝒊 = 𝟏 𝑻𝒊 = 𝟎 

𝑿𝒊 = 𝟏 1 0 

𝑿𝒊 = 𝟎 0 1 

 
Table 3: CPT of 𝑇𝑖 given 𝑋𝑖 and 𝑇1, … , 𝑇𝑁. 

𝑷(𝑻𝒊|𝑿𝒊, 𝑻𝟏, … , 𝑻𝑵) 𝑻𝒊 = 𝟏 𝑻𝒊 = 𝟎 

( ∑ 𝑻𝒌

𝑻𝒌∈𝑷𝒂(𝑻𝒊)

) ∙ 𝑿𝒊  ≥ 𝟏 1 0 

∑ 𝑻𝒌

𝑻𝒌∈𝑷𝒂(𝑻𝒊)

= 𝟎 0 1 

𝑿𝒊 = 𝟎 0 1 

 

In quantifying the CPTs of 𝑋𝑖,  there are 

largely two cases: (1) component events are 

statistically independent and (2) dependent. In the 

first case, one can simply add a 𝑋𝑖  node and an 

edge heading from 𝑇𝑖  to 𝑋𝑖  for each 𝑖.  For 

instance, for the example network, a BN is 

constructed as shown in Figure 5. Then, each node 

𝑋𝑖, 𝑖 = 1, … , 𝑁, is assigned a CPT that represents 

𝑃(𝑋𝑖). Similarly, the JT graph can be modified by 

simply adding a 𝑋𝑖  to the clique(s) where 𝑇𝑖 

appears, e.g., Figure 6 for the example network. 

 
Figure 5: BN graph of the example network when 

component events are independent. 

 

 
Figure 6: JT graph corresponding to Figure 5. 

 

On the other hand, in the second case, 𝑋𝑖 

nodes are all connected to each other, and the 

computation becomes complicated. For example, 

Figure 7 illustrates a modified BN graph of the 

example network. In this case, it is required to 

quantify a single joint CPT 𝑃(𝑋1, … , 𝑋𝑁) over all 

nodes 𝑋1, … , 𝑋𝑁,  whose size increases 

exponentially with 𝑁.  Such increase in 

computational complexity is also observed in the 

modified JT graph, which becomes a single large 

clique that contains all nodes 𝑋1, … , 𝑋𝑁, 𝑇1, … , 𝑇𝑁, 
and 𝑆, as shown in the example network in Figure 

8. More details of complexity quantification are 

discussed in Section 4. 

 

 
Figure 7: BN graph of the example network when 

component events are dependent. 
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Figure 8: JT graph corresponding to Figure 7. 

4. UTILIZATION OF THE CONSTRUCTED 

JUNCTION TREE GRAPH 

4.1. Network reliability analysis 

Once a junction graph and a message-passing 

schedule are set up, NRA can be carried out by 

evaluating the marginal distribution of the system 

event, 𝑃(𝑆).  This procedure is straightforward 

when component events are statistically 

independent (e.g., the JT in Figure 6). 

On the other hand, when they are dependent 

(e.g., Figure 8), advanced inference strategies 

such as Rao-Blackwellized particles or 

conditioning (Koller and Friedman 2009, Byun 

and Song 2021b) can be employed to make the 

analysis affordable. The Rao-Blackwellized 

approach circumvents memory issues by applying 

sampling to a subset of r.v.’s while performing 

exact inference over other r.v.’s. Meanwhile, if 

there are common-cause variables (e.g., intensity 

of an earthquake), applying the conditioning 

technique to those variables can significantly 

reduce a required memory (Byun and Song 

2021b). Even when there is no common-source 

variable, one can artificially model such variables, 

e.g., Bensi et al. (2011) and Song and Kang (2009). 

4.2. Quantifying the complexity of NRA  

A constructed JT graph can be used to quantify the 

computational complexity of NRA by evaluating 

the sum of the memory required to store the CPTs 

of the cliques. Specifically, the memory 

demanded by a clique 𝐶𝑗  is the product of the 

number of states of the r.v.’s in 𝐶𝑗. Therefore, the 

required memory is proportional to  2𝑁𝑗 where 𝑁𝑗 

is the number of r.v.’s in clique 𝐶𝑗 . For instance, 

in the illustrative network, the number of 

probabilities to be stored is 23 + 23 + 23 + 23 =
32 as all cliques consist of 3 components. It is 

noted that a required memory is governed by the 

largest clique. 

Such utility is beneficial in that the 

quantification of network topology complexity 

remains inconclusive. While there are several 

metrics developed to this end (e.g., Valiant 1979, 

Ball 1986), the proposed approach provides a 

direct metric for NRA. Before performing NRA, 

one can use the proposed approach to measure the 

complexity of a given network topology and 

select an appropriate NRA method. For instance, 

if the given topology is too complicated to apply 

analytical methods, one can use a sampling 

method or advanced BN inference algorithms.   

 

(a) 
 

 

(b) 

 
 

(c) 

 
 

(d) 

 
Figure 9: Typical topologies of networks: (a) line, (b) 

grid, (c) tree, and (d) complete. 
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5. NUMERICAL EXAMPLES 

5.1. Complexity quantification of typical 

topologies 

This section investigates the computational 

complexity of four typical network topologies: 

line, grid, tree, and complete networks in Figure 9. 

Since the largest clique governs 

computational complexity, we show the largest 

clique size of the corresponding JT graphs in 

Figure 10, where the number of arcs varies from 

4 to 184. In the line and tree networks, the 

complexity is not affected by an increasing 

number of arcs. On the other hand, the maximum 

clique size in complete networks increases 

linearly, which indicates that the memory demand 

increases exponentially. The maximum clique 

size of the grid structure also increases with the 

number of arcs, but at a much slower rate than the 

complete network.  

 

 
Figure 10: Maximum clique size of each topology 

with network size represented by number of arcs. 

5.2. Eastern Massachusetts highway network 

The Eastern Massachusetts (EMA) highway 

network consists of 129 directional arcs and 74 

vertices (modified from Zhang et al. (2018)), as 

shown in Figure 11(a). The failure probability of 

each arc, 𝑃(𝑋𝑖 = 0),   is set as 0.1 for 𝑖 =
1, … ,129. Using the strategy described in Section 

3.2, the network is simplified to that in Figure 

11(b), where the numbers of arcs and vertices are 

reduced to 85 and 47, respectively. 

 

(a) 

 
(b) 

 
Figure 11: EMA highway network: (a) original 

network and (b) simplified network by preprocess. 

 
Table 4: Analysis results of EMA highway network. 

 
Failure 

probability 

Computational 

time (sec) 

NRA using BN 

(w/ preprocess) 
2.957% 0.525 

NRA using BN 

(w/o preprocess) 
2.957% 0.757 

MCS (c.o.v. 1%) 2.952% 19.99 

 

Considering the independent component 

events 𝑋𝑖,  the maximum clique sizes of the JT 

graph with and without preprocessing are 

identical as 16. The result implies that, in this 

example, preprocess does not incur any difference 

in computational complexity although 

preprocessing slightly shortens the time by 

reducing message-passing between cliques. Table 

4 shows the computational costs and the network 

failure probability estimates by the proposed 

method with and without preprocess, compared to 

the results of Monte Carlo simulation (MCS). The 

results confirm that the proposed method provides 
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consistent estimates of the network failure 

probability, while taking only about 2.6~3.8% of 

the computation time taken by MCS. It is noted 

that the result computed by the proposed method 

is an exact solution.  

6. CONCLUSIONS 

In this paper, an efficient NRA method is 

proposed by utilizing a Bayesian network (BN) 

and dual graph representation. The proposed 

method can assess the reliability of networks 

whose exact solutions cannot be obtained using 

existing methods. Moreover, the proposed method 

provides a useful metric to quantify complexity of 

an NRA problem, which reflects not only the 

number of components, but also network topology. 

Furthermore, the proposed method can be easily 

implemented by using existing BN algorithms 

and/or BN software programs as it is based on the 

well-established BN theory. The numerical 

examples demonstrate the performance of the 

proposed method, which include the Eastern 

Massachusetts highway network consisting of 129 

arcs. 

The proposed method has a few limitations, 

which remain as future research topics. First, the 

method cannot handle networks that have directed 

cycles. Second, the statistical dependence 

between component events increases 

computational cost exponentially with the number 

of network components. These issues can be 

addressed by developing advanced inference 

algorithms. 
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