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ABSTRACT: It is essential to analyze the reliability of lifeline networks such as transportation networks and 

water supply systems, which play a central role in maintaining urban functions. To evaluate the reliability of 

lifeline networks efficiently, a non-simulation-based algorithm, termed recursive decomposition algorithm 

(RDA) identifies disjoint cut sets and link sets for calculating network reliability. However, there are 

limitations in applying RDA due to complex characteristics of real lifeline networks. To overcome this issue, 

the authors recently proposed a new approach utilizing a network centrality index, termed centrality-based 

selective recursive decomposition algorithm (CS-RDA; Lee and Song, 2021). By decomposing subgraphs 

containing critical components with high centrality with a priority, CS-RDA reduces the number of subgraphs 

required to achieve the target bound width. A clustering method utilizing edge-betweenness centrality was 

also introduced to handle complex networks with minimal information loss. This paper presents CS-RDA and 

clustering method and demonstrates efficiency by a numerical example of a water distribution network in 

Sejong, South Korea. 
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1  INTRODUCTION 

As cities become more complex, modern societies are 

highly dependent on lifeline networks such as 

transportation networks, electricity networks, and gas 

networks. When a severe earthquake occurs, the reliability 

and performance of lifeline networks become far more 

critical; damaged lifeline networks can hamper prompt 

responses, and lead to social repercussions caused by 

delayed recovery. Therefore, it is essential to rapidly 

assess the two-terminal reliability problem in system 

reliability analysis (SRA) to make appropriate post-

disaster decisions (Stern et al. 2017). 

However, the reliability analysis of large-scale 

networks faces various obstacles like an excessive number 

of components, complex network topology, and intricate 

interdependence between network components. To 

overcome these difficulties and analyze the network 

reliability promptly but accurately, many simulation-

based approaches that have straightforward applicability 

and high flexibility have been proposed. These 

simulation-based methods, however, have a critical 

limitation: a tremendous amount of computational time is 

required to achieve a statistically significant level of 

convergence for rare events. In addition, these approaches 

often make it intractable to perform probabilistic 

inferences or to quantify the contribution of each 

component to network failure events using the result of 

simulations. 

Various non-simulation-based approaches have 

been developed to address the limitations of 

simulation-based approaches. For example, Li & He 

(2002) proposed an algorithm to decompose a network 

recursively, called the recursive decomposition 

algorithm (RDA), which decomposes a network into 

cut sets and link sets that are mutually exclusive to each 

other. These identified disjoint cut sets and link sets 

result in a great advantage in calculating the network 

reliability. 

Lim & Song (2012) went further by proposing a 

method, termed the selective recursive decomposition 

algorithm (S-RDA). The algorithm decomposes 

critical cut sets and link sets with the most likelihood 

with a priority. Since the probabilities of the critical cut 

sets and link sets identified by S-RDA are generally 

much higher than those identified by the original RDA, 

the convergence speed of the bounds on network 

reliability is significantly enhanced. The 

computational cost saved by S-RDA facilitates 

analyzing large-scale lifeline networks that cannot be 

handled by existing algorithms. Furthermore, inter- 

and intra-event uncertainties in spatially correlated 

ground motions were incorporated into network 

reliability analysis by S-RDA. It was found that the 

assumption of statistical independence that disregards 

spatial correlations can over- or underestimate network 

reliability significantly. 

Although the performance of S-RDA is more 
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efficient than the original RDA, some computational 

limitations still exist in its direct applications to real urban 

lifeline networks. Besides, the calculations to consider 

spatial correlations may increase the computational 

complexity and costs. Consequently, the reduction in total 

calculation time may become negligible. For reasonable 

calculation time and memory savings and fast 

convergence of bounds of network reliability, network 

simplification was also considered in RDA-based 

analyses . Lim et al. (2015) proposed an SRA method 

through a hierarchical representation. A simplified 

network consists of the clusters identified by spectral 

clustering algorithms was utilized in the proposed multi-

scale analysis. 

Recently, the authors proposed an approach utilizing 

network centrality, termed centrality-based selective 

recursive decomposition algorithm (CS-RDA; Lee & 

Song 2021), to improve the efficiency of existing RDAs 

and simplify the network at the same time. By 

preferentially decomposing the node which is most likely 

to belong to min-cut within each subgraph based on 

centrality, the convergence time of the bounds on network 

reliability can be reduced. The authors also introduced a 

clustering algorithm based on centrality in terms of edges, 

which is more suitable for large-scale operations than the 

spectral clustering algorithm. The reliability of 

components that make up the simplified network is 

evaluated by sampling methods. As a result, the 

computational complexity of the SRA of the simplified 

network decreases exponentially. The efficiency of the 

proposed approaches is demonstrated by a numerical 

example of a large-scale network and compared with that 

of existing RDAs. 

2 FRAMEWORK OF RECURSIVE 

DECOMPOSITION ALGORITHMS 

Using graph theory, let us consider a lifeline network as a 

graph 𝐺 = (𝑁, 𝐸), where 𝑁 and 𝐸 respectively denote the 

sets of the nodes and edges in the graph. The node-set 𝑁 

consists of nodes representing both node-type (e.g., 

pipelines and electricity wires) and line-type components 

(e.g., stations and power plants). Regardless of the 

component type, the failure of components in the lifeline 

network results in the failure of node 𝑛 ∈ 𝑁, whereas edge 

𝑒 ∈ 𝐸 only represents the connection between two nodes, 

that is, network topology. 

2.1 Recursive decomposition algorithm 

After a natural or man-made disaster occurs, suppose each 

component has a binary state: operative or failed. 

Likewise, an origin/destination (O/D) pair can be 

disconnected or remain connected. To express the 

states of individual components and the O/D 

connectivity, “node functions” 𝑎𝑖 , 𝑖 = 1,… ,𝑁, and a 

“structure function” Ψ(𝐺),  i.e., Bernoulli random 

variables representing the state of the 𝑖𝑡ℎ  component 

and the O/D connectivity, respectively, are introduced 

as follows: 

𝑎𝑖 = {
1, if 𝑖th component operates

0, if 𝑖th component fails,
 (1) 

Ψ(𝐺) = {
1, if O 𝐷⁄  pair is connected

0, if O 𝐷⁄  pair is disconnected.
 (2) 

Consider the shortest path of an O/D pair, which is 

represented as 𝐴1 = 𝑎1𝑎2…𝑎𝑛 .  According to the 

Boolean operation laws, the structure function Ψ(𝐺) is 
expressed as a linear function of the node and structure 

functions of subgraphs, in the ascending order of 

component numbering, i.e., 

Ψ(𝐺) = 𝑎1𝑎2…𝑎𝑛Ψ(𝐺) + (𝑎1𝑎2…𝑎𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅Ψ(𝐺) 

            = 𝑎1𝑎2…𝑎𝑛 + �̅�1Ψ(𝐺1) + 𝑎1�̅�2Ψ(𝐺2) 

                +⋯+ 𝑎1𝑎2⋯𝑎𝑛−1�̅�𝑛Ψ(𝐺𝑛), 

(3) 

where 𝐺𝑖  represents the subgraph of 𝐺,  obtained by 

removing the 𝑖th node from the original graph 𝐺. If 𝐺𝑖 
still has the shortest path of the O/D pair, Ψ(𝐺𝑖) is 
recursively expanded in the same way. The selection 

of subgraphs to explore the O/D connectivity follows a 

breadth-first search (BFS) ordering. 

Using the structure function, the network reliability 

can be expressed as a probability about the structure 

function. If all disjoint link sets 𝐿𝑖 , 𝑖 = 1,… , 𝑁𝐿 , are 

identified by an algorithm, the network reliability 𝑅, 
can be calculated by summing up their probabilities, 

i.e., 

𝑅 = 𝑃[Ψ(𝐺) = 1] = 𝑃 (⋃𝐿𝑖

𝑁𝐿

𝑖=1

) =∑𝑃(𝐿𝑖)

𝑁𝐿

𝑖=1

. (4) 

The network failure probability 𝑃𝑓 , can be obtained 

in the same way using all disjoint cut sets between the 

origin and the destination node, 𝐶𝑖 , 𝑖 = 1, … , 𝑁𝐶 , i.e., 

𝑃𝑓 = 𝑃[Ψ(𝐺) = 0] = 𝑃 (⋃𝐶𝑖

𝑁𝐶

𝑖=1

) =∑𝑃(𝐶𝑖).

𝑁𝐶

𝑖=1

 (5) 

However, it is highly time-consuming to identify all 

disjoint cut sets and link sets for a large-scale network. 

In this case, one can calculate the upper and lower 

bounds on the network failure probability. Both 

identified cut sets and link sets are utilized to obtain the 
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information about the bounds on the network failure 

probability, i.e., 

∑𝑃(𝐶𝑖)

𝑛𝐶

𝑖=1

≤ 𝑃𝑓 ≤ 1 −∑𝑃(𝐿𝑖)

𝑛𝐿

𝑖=1

, (6) 

where 𝑛𝑐 and 𝑛𝐿 are the numbers of identified disjoint cut 

sets and link sets, respectively. The decomposition of 

structure functions Ψ(𝐺𝑖)  are repeated until the bound 

width, i.e., the gap between the upper and lower bounds 

on the network failure probability, becomes smaller than 

a target value 𝜀, as shown in Figure 1. 

 

 
Figure 1. Flowchart of recursive decomposition algorithm. 

2.2 Selective recursive decomposition algorithm 

The two most notable differences between S-RDA (Lim 

& Song 2012) and the original RDA are: (1) path selection 

and (2) subgraph selection order. In S-RDA, critical 

disjoint link sets with primary contributions to the 

likelihood of the network connection are identified by 

finding the most reliable paths instead of the shortest paths. 

Furthermore, when choosing a subgraph to decompose, 

the one with the highest probability is identified first 

instead of node numbering order. 

3 NETWORK RELIABILITY ASSESSMENT 

AND CLUSTERING IN TERMS OF 

NETWORK TOPOLOGY 

Network centrality is used to analyze the quantitative 

importance of each component in the network. Various 

network centralities have been developed, e.g., 

influential people in social networks, key nodes on the 

Internet, and super-spreaders of diseases (Özgür et al. 

2008). This paper focuses on betweenness centrality 

among the centrality indicators available in the 

literature. 

3.1 Betweenness centrality 

Betweenness centrality measures the probability that 

the shortest path between any two nodes in the graph 

passes through a given node. In detail, betweenness of 

the 𝑖𝑡ℎ component, 𝐶𝐵(𝑖), is given as 

𝐶𝐵(𝑖) =∑∑
𝑣𝑖(𝑠, 𝑡)

𝑣(𝑠, 𝑡)
𝑡≠𝑠,𝑖𝑠≠𝑖

, (7) 

where 𝑣(𝑠, 𝑡) is the total number of shortest paths from 

component 𝑠 to 𝑡, and 𝑣𝑖(𝑠, 𝑡) is the number of those 

passing through component 𝑖. In this paper, 𝑣(𝑠, 𝑡) and 

𝑣𝑖(𝑠, 𝑡) will be substituted with the total number of the 

most reliable paths between component 𝑠 to 𝑡, and the 

number of those via component 𝑖, respectively. 

Betweenness can be classified into two categories 

depending on what components are handled: (1) node 

betweenness; and (2) edge betweenness. While both 

betweenness centralities are defined in the same 

principle, they focus on nodes and edges, respectively. 

3.2 Centrality-based selective recursive 

decomposition algorithm 

To improve the efficiency of SRA methods, it is 

important to prioritize key components of the network. 

To this end, we can consider two main ideas: (1) 

calculating critical disjoint cut sets and link sets with 

the highest probability, such as S-RDA, and (2) 

fundamentally reducing the number of expected 

subgraphs.  

The recently proposed CS-RDA (Lee & Song 2021) 

utilizes node betweenness to find critical nodes, whose 

removals are expected minimize the number of 

branches in the following network decomposition 

process, e.g., O/D nodes. The algorithm is based on the 

observation that the removal of nodes with high 

betweenness accelerates network disconnection 

compared to the removal of randomly selected nodes 

(Albert et al. 2000, Iyer et al. 2013). The removal of 

the node with high betweenness shortens the network 

decomposition process exponentially owing to the 

reduced number of potential subgraphs. The shortened 

computational process not only accelerates the 

network reliability analysis, but also enables the 



                                
The 13th International Conference on Structural 

Safety and Reliability (ICOSSAR 2021-2022), 
Sept. 13-17, 2022, Shanghai, P.R. China 

                  ISBN 978-7-5478-6230-8 

analysis of even larger networks. 

However, there is a fatal drawback in CS-RDA. 

Because node betweenness depends on network topology, 

the convergence speed of CS-RDA varies vastly over O/D 

pairs even within a network. When betweenness of nodes 

on the most reliable path between the O/D pair is 

exceptionally low, key nodes that are highly likely to 

belong to the min-cut could be pushed to lower priorities. 

In this case, there is little progress in convergence speed 

due to the low probability of the identified sets, or CS-

RDA can be rather inferior to the existing algorithms. To 

prevent such cases, one can assign virtual nodes to each 

O/D node. The introduced virtual node increases not only 

the centrality of the O/D nodes, but also the centrality of 

the nodes located in the path of the two nodes, resulting in 

critical nodes with high centrality.  

3.3 Network simplification using edge-

betweenness algorithm 

Even after CS-RDA improves the efficiency of network 

reliability analysis significantly, some large lifeline 

networks still exceed analyzable size. Moreover, as the 

number of disjoint sets within the network increases 

exponentially, the accuracy of calculating the probability 

of each disjoint set gets worse due to the accumulated 

computational errors caused by the high-dimensional 

calculation. 

To address these problems of complex networks, 

various clustering-based network simplification schemes 

have been considered (Gómez et al. 2013, Lim et al. 2015). 

Clustering algorithms aim to minimize the computational 

complexity of network analysis and to preserve 

information about components and the topology of the 

original network. However, most existing clustering 

methods show infeasible computational complexity in 

large-scale networks, and there is no objective basis for 

judging the quality of the clustering results. 

To measure the goodness of a given clustering choice, 

modularity 𝑄  is often used (Newman & Girvan 2004). 

Modularity is the normalized difference between the 

actual and the expected numbers of the edges connecting 

a pair of nodes in the same cluster, i.e., 

𝑄 =
1

2𝑚
∑∑{[𝐴𝑖𝑗 −

𝐶𝐷(𝑖)𝐶𝐷(𝑗)

2𝑚
] 𝛿𝑐𝑖𝑐𝑗}

 

𝑗

 

𝑖

, (8) 

where 𝐴𝑖𝑗 is a binary variable that becomes 1 when the 𝑖th 

and 𝑗th  nodes are adjacent, and 0 otherwise; 𝑚 =
∑ ∑ 𝐴𝑖𝑗𝑗𝑖 2⁄  is the total number of the edges in the network; 

and 𝛿𝑐𝑖𝑐𝑗 is the Kronecker delta, which gives 1 if both the 

𝑖th  and 𝑗th  nodes belong to the same cluster, and 0 

otherwise.  

It is NP-hard to find the network clustering choice 

maximizing the modularity (Brandes et al. 2007). To 

solve the problem quickly and efficiently, a heuristic 

edge-betweenness algorithm, also kwon as the Girvan-

Newman algorithm, can be employed with relatively 

low computational cost (Newman & Girvan 2004). 

The edge-betweenness algorithm removes edges with 

the highest edge betweenness progressively from the 

original network until modularity stops increasing. 

The clusters identified by the edge-betweenness 

algorithm are represented by the simplified 

representation of the network introduced in Lim et al. 

(2015). The simplified network consists of inter-cluster 

nodes, inter-cluster edges, and super-edges. An inter-

cluster node is a type of node located at the boundary 

of a cluster and is adjacent to a node within another 

cluster. An inter-cluster edge is an edge that connects 

two inter-cluster nodes located in different clusters, 

while a super-edge is a virtual edge representing 

connectivity between inter-cluster nodes within the 

same cluster. Since inter-cluster nodes are a part of 

existing network components, there is no need to 

evaluate their reliabilities. This is also valid for inter-

cluster edges, which are a part of the edges that do not 

inherently have their own reliabilities. On the contrary, 

the reliability of super-edges requires additional 

calculations. There are three methods for evaluating 

the reliability of super-edges depending on the number 

of O/D nodes included in the cluster, as detailed by 

Lim et al. (2015). 

4 EVALUATION OF SEISMIC 

RELIABILITY AND STATISTICAL 

DEPENDENCE 

The assessment of seismic reliability of each 

component should be preceded to evaluate network 

failure probability, which consists of two major 

uncertainties: (1) the seismic demands throughout the 

network, and (2) the seismic capacity of each 

component. 

4.1 Uncertainties in ground motion intensity 

When peak ground acceleration (PGA) is used as 

ground motion intensity measures, a typical ground 

motion prediction equation (GMPE) is described 

(Abrahamson & Youngs 1992) as 

ln 𝑃𝐺𝐴𝑖 = 𝑓(𝑀, 𝑅𝑖 , 𝝀𝑖) + 𝜂 + 𝜀𝑖 , (9) 

where PGA𝑖 is the actual PGA demand at the 𝑖th site; 

𝑓(𝑀𝑤 , 𝑅𝑖 , 𝝀𝑖) is the attenuation relation in terms of the 
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moment magnitude of the earthquake𝑀𝑤 ,  the distance 

between the earthquake source and the 𝑖th site, 𝑅𝑖 , and a 

set of other explanatory variables 𝝀𝑖; and 𝜂 and 𝜀𝑖 are the 

inter- and intra-event residuals with zero means and 

standard deviations 𝜎𝜂  and 𝜎𝜀 , respectively. 𝜂  and 𝜀𝑖  are 

assumed to be statistically independent of each other and 

follow Gaussian distributions. 

In the numerical example in Section 5, the attenuation 

relation model in Lim & Song (2012) is adopted to predict 

𝑓(𝑀,𝑅𝑖 , 𝝀𝑖) as 

𝑓(𝑀𝑤 , 𝑅𝑖 , 𝝀𝑖) = −0.5265 − 0.0115√𝑅𝑖
2 + 1.352 

+[0.0599(𝑀𝑤 − 4.5) − 0.3303] ln(𝑅𝑖
2 + 1.352), 

(10) 

where 𝑅𝑖  is the distance between the 𝑖th  site and the 

epicenter, given in km. 

To consider the correlation coefficient between the 

seismic demands, Goda and Hong (2008) suggested 

models for correlation coefficient between residuals at the 

𝑖𝑡ℎ  and 𝑗𝑡ℎ  sites. The correlation coefficient between 𝜀𝑖 
and 𝜀𝑗 ,  𝜌𝜀𝑖𝜀𝑗 ,  is often expressed as a function of the 

distance 𝛥𝑖𝑗  between the two sites and the spatial 

correlation model used in this paper is given as 

𝜌𝜀𝑖𝜀𝑗(Δ𝑖𝑗) = exp(−0.27Δ𝑖𝑗
0.40). (11) 

Then, one can derive the correlation between ln 𝑌𝑖 and 

ln𝑌𝑗in terms of characteristics of distance Δ𝑖𝑗 , inter-event 

residual, and intra-event residual, i.e., 

𝜌ln𝑌𝑖 ln𝑌𝑗(Δ𝑖𝑗) =
𝜎𝜂
2 + 𝜌𝜀𝑖𝜀𝑗(Δ𝑖𝑗)𝜎𝜀

2

𝜎𝜂
2 + 𝜎𝜀

2
, (12) 

where the standard deviations of the inter- and intra-event 

residuals are assumed to be 0.265 and 0.502, respectively, 

in this paper. 

4.2 Seismic reliability assessment of structures 

According to HAZUS-MH (FEMA 2012), the limit-state 

capacity of the 𝑖th  structure, 𝐿𝑆𝑖 ,  follows Lognormal 

distribution with parameters  α𝑖
𝐿𝑆 and 𝛽𝑖

𝐿𝑆 , which are the 

mean and standard deviation of the natural logarithm of 

𝐿𝑆𝑖 ,  respectively. In Section 5, The parameters α𝑖
𝐿𝑆  and 

𝛽𝑖
𝐿𝑆  of limit-state capacities 𝐿𝑆𝑖  are assumed to be 0.85 

and 0.35, respectively. Based on the capacity and demand 

of components, the failure probability of each structure is 

computed as 

𝑃(𝐸𝑖) = Φ(−𝛽𝑖) = 𝑃(ln𝐿𝑆𝑖 ≤ ln𝑌𝑖)

= Φ

(

 
𝑓(𝑀𝑤 , 𝑅𝑖 , 𝝀𝑖) − 𝛼𝑖

𝐿𝑆

√𝜎𝜂2 + 𝜎𝜀2 + 𝛽𝑖
𝐿𝑆2

)

 , 
(13) 

where 𝛽𝑖 is the generalized reliability index, and Φ(∙) 
denotes the cumulative distribution function (CDF) of 

the standard Gaussian distribution. 

Lee & Song (2021) derived a formula to calculate 

the correlation coefficient of two failure events 𝐸𝑖 and 

𝐸𝑗 , 𝜌𝑖𝑗 as 

𝜌𝑖𝑗 =
𝜎𝜂
2 + 𝜌𝜀𝑖𝜀𝑗(Δ𝑖𝑗)𝜎𝜀

2 + 𝛽𝑖
𝐿𝑆𝛽𝑗

𝐿𝑆𝛿𝑖𝑗

√𝜎𝜂2 + 𝜎𝜀2 + 𝛽𝑖
𝐿𝑆2√𝜎𝜂2 + 𝜎𝜀2 + 𝛽𝑗

𝐿𝑆2
, (14) 

where 𝛿𝑖𝑗 is the Kronecker delta, which is 1 if 𝑖 = 𝑗, 
and 0 otherwise. The derived equation ensures the 

accuracy, and shortens the computational time 

compared to the numerical methodology. 

4.3 Component importance measure 

In efforts to establish a cost-effective maintenance 

planning for lifeline networks, it is helpful to identify 

components making major contributions to network 

reliability based on topological importance and 

component failure probabilities. To quantify and rank 

the contributions of components to a network, various 

component importance measures have been proposed. 

The conditional probability importance measure 

(CPIM) measures a conditional probability defined as 

𝐶𝑃𝐼𝑀𝑖 = 𝑃(𝐸𝑖|𝐸𝑛𝑒𝑡) =
𝑃(𝐸𝑖𝐸𝑛𝑒𝑡)

𝑃(𝐸𝑛𝑒𝑡)
, (15) 

where 𝐸𝑛𝑒𝑡  is the network failure event, that is, the 

event that the O⁄D pair is disconnected (Song & Kang 

2009).  

Lee & Song (2021) proposed to evaluate the 

component importance by the combination of node 

betweenness and failure probability of each node 

instead of a single index. The calculation of the two 

quantities consumes a very short time, and one can 

grasp the component importance in terms of 

vulnerability and network topology, respectively. 

5 NUMERICAL EXAMPLE 

A numerical example is presented to demonstrate the 

performance of CS-RDA and multi-scale approach: 

water network in Sejong, South Korea, modified from 

Lim et al. (2015). The computational times in this 
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paper are based on the use of MATLAB® on a personal 

computer with AMD Ryzen 5 3600 3.60 GHz CPU and 

16GB RAM. 

To compare the efficiency of the existing RDAs and 

proposed CS-RDA, the number of disjoint sets and 

computational times required to achieve the target bound 

width of 1% are presented. Subsequently, we discuss how 

the computational cost and accuracy of the analysis 

change in the simplified network by using the edge-

betweenness algorithm.  

Figure 2 shows the Sejong water distribution network 

that consists of 158 nodes (59 node-type and 99 line-type 

components) and 198 bi-directional edges; the total 

number of components is 554 (= 158 + 198 × 2) under a 

scenario earthquake with a moment magnitude of 𝑀𝑤 =
 6.0.  The edge-betweenness algorithm identifies four 

clusters (blue facets) as shown in Figure 3. The simplified 

network has 35 nodes (red dots) and 44 bi-directional 

edges (thick gray line); the total number of components is 

reduced to 123 (= 35 + 44 × 2). 

 

 
Figure 2. Water network in Sejong City (adapted from Lim et al. 

(2015)). 

Figures 4-7 visualize and compare the bounds on the 

network reliability and their widths obtained by the 

original RDA, S-RDA and CS-RDA, in terms of the 

number of identified disjoint sets, and the computational 

times. The number of the identified disjoint sets needed 

for CS-RDA is 2,417, which is only about 10.08% and 

22.82% of that for the original RDA and S-RDA, 

respectively. Comparing Figures 4-5 or Figures 6-7, the 

computational time ratios of CS-RDA to the original RDA 

and S-RDA are similar to the disjoint set ratios, 

respectively, which means that the computational time 

relies primarily on the number of disjoint sets. Even with 

this remarkably reduced computation time and memory  

 
Figure 3. Simplified water network in Sejong City. 

for CS-RDA, the bounds on network reliability are 

close to those using existing algorithms, as well as to 

the value 𝑅 = 0.8841 obtained by MCS. 

 
Figure 4. Bounds on network reliability in terms of the 

number of disjoint sets. 

 Table 1 summarizes the failure probability analysis 

results of the original and the simplified network using 

CS-RDA. In the network simplification, additional 

data preprocessing for the edge-betweenness algorithm 

and the evaluation of failure probability and statistical 

dependency of super-components is required. Despite 

the long preprocessing time (about 74 seconds), the 

total computational time decreases significantly by less 

than half. Considering the network failure probability 

obtained by MCS, there is little loss in terms of 

accuracy, although the analysis time excluding the 

preprocessing took only 8.34 seconds, which is only 

2.26% of the computational time of the original 

network analysis. 
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Figure 5. Bounds on network reliability in terms of 

computational time. 

 

Figure 6. Bound widths in terms of the number of disjoint sets. 

 

Figure 7. Bound widths in terms of computational time. 

 

Table 1. Analysis results for water network in Sejong 
City. 

 

Scale 
Original 
Network 

Simplified 
Network 

Bound on 𝑅 [0.8777,0.8877] [0.8732,0.8832] 

No. of disjoint sets 2,414 84 

Preprocessing time - 74.1 s 

Computational time 368 s 82.4 s 

 
Table 2 shows that five nodes with the highest 

CPIMs and their CPIMs, node betweenness, and 

failure probabilities. While CPIMs comprehensively 

evaluate risk-related information and topological 

characteristics of the network to find nodes with deep 

impact in O/D disconnection, the computational time 

is considerable. In contrast, the calculations of node 

betweenness and node failure probabilities are very 

fast, and it is easy to quantify how each node is 

evaluated in terms of vulnerability and topological 

aspect, respectively. 
 
Table 2. CPIMs, node betweenness (BC), and failure 
probabilities (𝑷𝒇) of the nodes with the highest CPIMs 
in water network in Sejong City. 

 

Component IDs CPIM Rank BC rank 𝑃𝑓 rank 

16 2 1 124 

21 5 52 5 

46 1 3 30 

54 3 130 1 

139 4 107 2 

Computational time 204 s 0.0209 s 0.0278 s 

 
For example, nodes 16 and 46 with the highest 

CPIMs show a high level of node betweenness 

compared their failure probabilities, indicating that 

they are in a topologically key position; actually these 

two nodes are O/D nodes. On the other hand, nodes 21, 

54 and 139 are identified as important components 

because of their high failure probabilities caused by its 

proximity to the epicenter. 

6 CONCLUSIONS 

In this paper, two algorithms utilizing the betweenness 

centrality, centrality-based selective recursive 

decomposition algorithm (CS-RDA) and multi-scale 

network simplification using the edge-betweenness 

algorithm, were reviewed for efficient reliability 

analysis of large-scale networks. 
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CS-RDA arranged nodes on the most reliable path in 

the descending order of node betweenness to eliminate 

redundancy in cut sets and link sets. The algorithm further 

improved the efficiency by assigning more weights to O/D 

nodes especially when these nodes have low centralities. 

To deal with intractable large-scale networks, the edge-

betweenness algorithm was introduced to cluster 

components and consequentially simplify networks. The 

simplified network is composed of sufficiently few nodes 

and edges that can be analyzed in a short time. 

The numerical example of the Sejong water 

distribution network successfully demonstrated these 

proposed algorithms. CS-RDA showed a superior 

performance in terms of computational efficiency 

compared to the existing RDAs while the analysis of the 

simplified network took the performance of CS-RDA to 

the next level with little loss of accuracy. Moreover, the 

component importance is measured in terms of 

vulnerability and network topology, and compared in 

terms of CPIMs. 

A non-simulation-based network reliability analysis 

and a clustering method have been unified into a network 

topology index called betweenness centrality. The 

centrality-based reliability assessment and multi-scale 

approach of networks are expected to help policymakers 

effectively deal with large and complex networks of urban 

communities. 

ACKNOWLEDGMENTS 

This research was supported by a grant (21SCIP-

B146946-04) from Smart Civil Infrastructure Research 

Program funded by Ministry of Land, Infrastructure and 

Transport of Korean government. 

REFERENCES 

[1] Abrahamson, N.A. & Youngs, R.R. 1992. A stable 

algorithm for regression analyses using the random effects 

model. Bulletin of the Seismological Society of America 

82(1): 505-510. 

[2] Albert, R., Jeong, H. & Barabási, A.L. 2000. Error and 

attack tolerance of complex networks. Nature 406(6794): 

378-382. 

[3] Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, 

M., Nikoloski, Z. & Wagner, D. 2007. On modularity 

clustering. IEEE transactions on knowledge and data 

engineering 20(2): 172-188. 

[4] Federal Emergency Management Agency (FEMA). 2012. 

HAZUS–MH 2.1: Multi-Hazard Loss Estimation 

Methodology, Earthquake Model. 

[5] Goda, K. & Hong, H.P. 2008. Spatial correlation of peak 

ground motions and response spectra. Bulletin of the 

Seismological Society of America 98(1): 354-365. 

[6] Gomez, C., Sanchez-Silva, M., Dueñas-Osorio, L. & 

Rosowsky, D. 2013. Hierarchical infrastructure network 

representation methods for risk-based decision-making. 

Structure and Infrastructure Engineering 9(3): 260-274. 

[7] Iyer, S., Killingback, T., Sundaram, B. & Wang, Z. 2013. 

Attack robustness and centrality of complex networks. 

PloS one 8(4): e59613. 

[8] Lee, D. & Song, J. 2021. Multi‐scale seismic reliability 

assessment of networks by centrality‐based selective 

recursive decomposition algorithm. Earthquake 

Engineering and Structural Dynamics 50(8): 2174-2194. 

[9] Li, J. & He, J. 2002. A recursive decomposition 

algorithm for network seismic reliability evaluation. 

Earthquake engineering and structural dynamics 31(8): 

1525-1539. 

[10] Lim, H.W. & Song, J. 2012. Efficient risk assessment of 

lifeline networks under spatially correlated ground 

motions using selective recursive decomposition 

algorithm. Earthquake Engineering and Structural 

Dynamics 41(13): 1861-1882. 

[11] Lim, H.W., Song, J. & Kurtz, N. 2015. Seismic 

reliability assessment of lifeline networks using 

clustering‐based multi‐scale approach. Earthquake 

Engineering and Structural Dynamics 44(3): 355-369. 

[12] Newman, M.E. & Girvan, M. 2004. Finding and 

evaluating community structure in networks. Physical 
review E 69(2): 026113. 

[13] Özgür, A., Vu, T., Erkan, G. & Radev, D.R. 2008. 

Identifying gene-disease associations using centrality on 

a literature mined gene-interaction network. 

Bioinformatics 24(13): i277-i285. 

[14] Song, J. & Kang, W. 2009. System reliability and 

sensitivity under statistical dependence by matrix-based 

system reliability method. Structural Safety 31(2): 148-

156. 

[15] Stern, R.E., Song, J. & Work, D.B. 2017. Accelerated 

Monte Carlo system reliability analysis through 

machine-learning-based surrogate models of network 

connectivity. Reliability Engineering and System Safety 

164: 1-9. 


	ABSTRACT: It is essential to analyze the reliability of lifeline networks such as transportation networks and water supply systems, which play a central role in maintaining urban functions. To evaluate the reliability of lifeline networks efficiently,...

