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It is imperative to evaluate the reliability of infrastructure networks such as transportation net-

works and water supply systems, which play a central role in maintaining urban functions. System 

reliability analysis of real lifeline networks generally faces various technical challenges, which 

are caused by a large number of components, complex network topology, and interdependency 

between component failures. An existing non-simulation-based algorithm, the selective recursive 

decomposition algorithm (S-RDA) has improved the original RDA, but still has limitations in 

terms of computational time and memory required for large-scale complex networks. In this paper, 

a new approach utilizing a network centrality index, termed a centrality-based selective recursive 

decomposition algorithm (CS-RDA), is developed. By decomposing subgraphs containing critical 

components identified based on centrality preferentially, CS-RDA can further reduce the number 

of the subgraphs required to achieve the target bound width and enables us to handle more com-

plex networks without increasing the computational costs significantly. It is also noted that one 

can further improve the efficiency of the algorithm by assigning more weights to the origin and 

destination nodes when they have low values of betweenness centrality in a network. The effi-

ciency of the proposed approach is demonstrated by numerical examples of a hypothetical net-

work and a real transportation network. 

Keywords: system reliability, infrastructure network, non-simulation-based approach, probability 

bounds, network centrality. 

 

1 Introduction 

As cities become denser and more complicated, modern society is highly dependent on the relia-

bility of urban lifeline networks such as transportation, electricity, and gas networks. When major 

disasters such as earthquakes and typhoons occur, the performance of the lifeline network be-

comes far more critical; the damaged lifeline networks can disrupt prompt response, and lead to 

socio-economic losses caused by a delayed recovery. Therefore, it is essential to rapidly evaluate 

the system failure probability, e.g., the probability of disconnection to identify appropriate follow-

up measures. 

However, system reliability analysis of infrastructure networks is very intricate because of an 

excessive number of components, complex network topology, and complicated interdependence 

between each component. To overcome these difficulties and analyze system reliability promptly 

but accurately, many simulation-based approaches that have straightforward applicability and high 
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flexibility have been proposed. These sampling methods however have an intrinsic limitation: a 

tremendous amount of computational time is required to achieve a statistically significant level of 

convergence for rare events. In addition, these approaches make it nearly impossible to perform 

various probabilistic inferences or to quantify the contribution of each component to system failure 

events using the analysis result. 

To address these limitations of simulation-based approaches, various non-simulation-based 

approaches have been developed and utilized. For example, Li and He (2002) proposed an algo-

rithm to decompose a network recursively. The recursive decomposition algorithm (RDA) identi-

fies cut sets (i.e., sets of network components whose joint failures cause the disconnection of the 

given origin-destination (O/D) pair) and link sets (i.e., sets of network components whose joint 

survivals ensure the connectivity of the given O/D pair) systematically. RDA identifies these link 

and cut sets such that they are mutually exclusive to each other, which results in a great advantage 

in calculating system reliability. 

Lim and Song (2012) proposed a method termed as a ‘selective recursive decomposition al-

gorithm’ (S-RDA), which improved the RDA by prioritizing critical sets that have the most like-

lihood of connection or disconnection of the given network. Since the probabilities of the identi-

fied link and cut sets using S-RDA are much higher than those identified by the original RDA, the 

convergence speed of the upper and lower bounds is significantly enhanced and the computational 

cost with respect to time and memory is saved. This improved efficiency facilitates analyzing 

large-scale lifeline networks that cannot be handled with existing algorithms. Furthermore, Lim 

and Song (2012) showed how inter- and intra-event uncertainties in spatially correlated ground 

motions can be incorporated into network reliability analysis using S-RDA. It was found that the 

assumption of statistical independence that disregards spatial correlations can overestimate or un-

derestimate system reliability significantly. 

Although the performance of S-RDA is much more efficient than RDA, there still exist some 

computational limitations for direct application to real urban lifeline networks. In addition, the 

calculation considering spatial correlations has a trade-off of the accuracy against the computa-

tional complexity. Consequently, the reduction in total calculation time is negligible. For mean-

ingful calculation time and memory savings and fast convergence of bounds of network reliability, 

utilizing network centrality of components can be used as a key factor in identifying critical sets 

and components. In some past research efforts regarding the relationship between network robust-

ness and centrality, critical components in terms of network connectivity were detected based on 

betweenness centrality (Carvalho et al. 2009, Lordan et al. 2014). However, these results were 

based on the assumption that the failure probabilities of all components are the same, so a measure 

considering the reliability of individual components as well as betweenness centrality is necessary 

to gain general applicability of such an algorithm. 

In this paper, a new network reliability analysis method termed a ‘centrality-based selective 

recursive decomposition algorithm’ (CS-RDA) is proposed. To identify critical components that 

contribute to the connection between the origin and destination nodes, we consider some network 

centrality concepts including betweenness centrality. Moreover, several alternatives are presented 

to compensate for the blind spot of the methodology based on network centrality. The performance 

of the proposed CS-RDA is demonstrated by numerical examples and compared with that of S-

RDA. 

 

2 Review of Existing Recursive Decomposition Algorithms 

Using graph theory, let us consider a lifeline network as a graph 𝐺 = (𝑁, 𝐴) where 𝑁 and 𝐴 re-

spectively denote the sets of the nodes and arcs in the graph. In general, graphs can be classified 

into three categories in terms of weight assignment: (1) node weight graph, i.e., only nodes are 

assigned weights; (2) arc weight graph, i.e., only arcs are assigned weights; and (3) general weight 
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graph, i.e., both nodes and arcs are assigned weights (Li and He 2002). A lifeline network, mean-

while, consists of both line-type (pipelines and electricity wires) and node-type components (sta-

tions and power plants). At first glance, it seems that only the general weight graph can handle the 

failure probabilities of both types of components. However, adopting an ‘arc-weighted’ approach 

in which every component is considered as a node regardless of the component types and the 

reliability of each component is reflected in the weight of neighboring arcs, we can transform any 

type of graphs into arc weight graphs. Thus, the node set 𝑁 consists of the nodes representing 

node-type elements and the ‘link nodes’ that are introduced to indicate the states of line-type ele-

ments (Lim and Song 2012). The arc set 𝐴 is made up of arcs whose weights are equal to the 

reliability of the arrival nodes. Reflecting the reliability of nodes in this way does not consider the 

reliability of the origin node, but it does not affect the result because the origin node is contained 

in all paths. 

Suppose after a natural or man-made disaster occurs, each component can have binary states: 

operative or failed. Likewise, an O/D pair can be disconnected from each other or remain con-

nected. To express the connectivity of the O/D pair and the states of individual components, a 

‘structure function’ Ψ(𝐺) and ‘node functions’ 𝑎𝑖, 𝑖 = 1, … , 𝑁, i.e., Bernoulli random variables 

representing the connectivity of a graph 𝐺 and the state of 𝑖th component respectively, are intro-

duced as follows: 

Ψ(𝐺) = {
1, if O/D pair is connected
0, if O/D pair is disconnected

 (1) 

𝑎𝑖 = {
1, if 𝑖th component operates

0, if 𝑖th component fails
 (2) 

Consider the shortest path from origin to destination node that is represented as 𝐴1 =
𝑎1𝑎2 … 𝑎𝑛. Then according to the Boolean laws, the structure function Ψ(𝐺) is expressed as a 

linear function of node and structure functions of subgraphs in ascending order of component 

numbering, i.e.,  

Ψ(𝐺) = 𝑎1𝑎2 … 𝑎𝑛 + �̅�1Ψ(𝐺1) + 𝑎1�̅�2Ψ(𝐺2) + ⋯ + 𝑎1𝑎2 ⋯ 𝑎𝑖−1�̅�𝑖Ψ(𝐺𝑖) + ⋯
+ 𝑎1𝑎2 ⋯ 𝑎𝑛−1�̅�𝑛Ψ(𝐺𝑛) 

(3) 

where 𝐺𝑖 represents the subgraph of 𝐺, obtained by removing 𝑖th node from 𝐺. If 𝐺𝑖  still has the 

shortest path from origin to destination node, Ψ(𝐺𝑖) is recursively expanded in the same way as 

mentioned in Equation (3). In S-RDA, to achieve faster convergence of the bounds on network 

failure probability, critical disjoint link sets are found by finding the most reliable paths instead of 

the shortest paths. Furthermore, when choosing a subgraph to be expanded, those with the highest 

likelihood of being cut sets are identified preferentially, not following node numbering. These 

differences help S-RDA converge faster than the original RDA. 

Using the structure function mentioned above, system reliability can be expressed as a prob-

ability about the structure function. If all disjoint link sets between the origin and the destination 

node, 𝐿𝑖 , 𝑖 = 1, … , 𝑁𝐿, are identified by an algorithm, the system reliability 𝑅, can be calculated 

by summing up their probabilities, that is, 

𝑅 = 𝑃[Ψ(𝐺) = 1] = 𝑃 (⋃ 𝐿𝑖

𝑁𝐿

𝑖=1

) = ∑ 𝑃(𝐿𝑖)

𝑁𝐿

𝑖=1

 (4) 
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The system failure probability 𝑃𝑓, can be obtained in the same way using all disjoint cut sets 

between the origin and the destination node, 𝐶𝑖, 𝑖 = 1, … , 𝑁𝐶 , that is,  

𝑃𝑓 = 𝑃[Ψ(𝐺) = 0] = 𝑃 (⋃ 𝐶𝑖

𝑁𝐶

𝑖=1

) = ∑ 𝑃(𝐶𝑖)

𝑁𝐶

𝑖=1

 (5) 

However, it is impossible to identify all disjoint link and cut sets for a large-scale network. In 

these cases, one can alternatively calculate the upper and lower bound of the system failure prob-

ability. In this case, both identified link and cut sets are utilized to obtain the information about 

the bounds of system reliability (Figure 1(a)) or system failure probability (Figure 1(b)), that is,  

∑ 𝑃(𝐿𝑖)

𝑛𝐿

𝑖=1

≤ 𝑅 ≤ 1 − ∑ 𝑃(𝐶𝑖)

𝑛𝐶

𝑖=1

 

∑ 𝑃(𝐶𝑖)

𝑛𝐶

𝑖=1

≤ 𝑃𝑓 ≤ 1 − ∑ 𝑃(𝐿𝑖)

𝑛𝐿

𝑖=1

 

(6) 

where 𝑛𝐿 and 𝑛𝑐 are the numbers of identified disjoint link and cut sets. 
  

 

(a) (b) 

Figure 1. The upper and lower bounds of (a) system reliability 𝑅, and (b) system failure probability 𝑃𝑓 

 

3 Importance Measures in terms of Network Topology 

For selective decomposition of networks, which would improve the efficiency of network relia-

bility analysis, we prioritize the nodes which are most likely to be included in critical cut sets of 

the network. Critical nodes are appraised in terms of network topology to achieve this goal. Vari-

ous network centralities have been developed to quantify importance of nodes in a network: influ-

ential people in social networks, key nodes in the Internet, and superspreaders of diseases (Ö zgür 

et al. 2008). In this paper, we will focus on the three most common indices: degree centrality, 

closeness centrality, and betweenness centrality. 

 

3.1    Degree centrality 

The simplest index of the network centrality is degree centrality, which is defined as the degree 

(i.e., the number of neighboring nodes) of each node. This is based on the assumption that the 

more nodes a given node is connected to, the greater the impact on the whole network. Using the 

adjacency matrix 𝐴, which takes 1 if there is an arc from node 𝑖 to node 𝑗, and 0 otherwise, the 

degree centrality of 𝑖th node, 𝐶𝐷(𝑖), is calculated as 

𝐶𝐷(𝑖) = ∑ 𝐴𝑖𝑗

𝑗≠𝑖

 (7) 

3.2    Closeness centrality 

The closeness of a node is based on the average distance of the shortest path between the node 

and the others in the network. On this account, the distance of all arcs in the network should be 

defined to use closeness centrality. Unlike degree centrality introduced above, the direction of arcs 
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can produce completely different results, e.g., a famous person has a high closeness centrality 

from incoming arcs, but a low closeness centrality from outgoing arcs. The closeness centrality of 

𝑖th node, 𝐶𝐶(𝑖), is defined as 

𝐶𝐶(𝑖) =
𝑛 − 1

∑ 𝑑𝑖𝑗𝑗≠𝑖

 (8) 

where 𝑑𝑖𝑗  represents the shortest distance from node 𝑖 to node 𝑗, and 𝑛 represents the number of 

nodes in the given network. 

 

3.3    Betweenness centrality 

Betweeness centrality, another centrality measure defined based on the shortest path, measures 

the centrality of a node by how many of the shortest paths pass through the node. The calculation 

process is quite similar to that of closeness centrality, but the difference is that while closeness 

centrality concentrates on the length of the shortest path, betweenness centrality focuses on the 

number of the shortest paths via the given node. In detail, the betweenness centrality of 𝑖th 

node, 𝐶𝐵(𝑖), is given as 

𝐶𝐵(𝑖) =
1

(𝑛 − 1)(𝑛 − 2)
∑ ∑

𝑣𝑖(𝑠, 𝑡)

𝑣(𝑠, 𝑡)
𝑠≠𝑖𝑡≠𝑠,𝑖

 (9) 

where 𝑣(𝑠, 𝑡) is the number of shortest paths from node s to node 𝑡, and 𝑣𝑖(𝑠, 𝑡) is the number of 

those passing through node 𝑖. 
 

4 Centrality-based Selective Recursive Decomposition Algorithm 

In the aforementioned S-RDA, identifying the subgraph with the highest probability makes the 

convergence of the bounds much faster than the original RDA. In addition to identifying critical 

disjoint sets that contributes significantly to system reliability, it is also important to identify crit-

ical components that are likely to belong to the minimum cut set. Albert et al. (2000) showed that 

the robustness of a network decreases dramatically when key components with high centrality 

(e.g., degree centrality, closeness centrality, or betweenness centrality) malfunction. It is known 

that betweenness centrality is most closely related to network robustness among various centrality 

indices (Iyer et al. 2013). 

In this paper, a new algorithm utilizing betweenness centrality, termed a centrality-based se-

lective recursive decomposition algorithm (CS-RDA), is proposed. However, there is a fatal draw-

back to using betweenness centrality in a straightforward manner. Because the centrality depends 

on network topology, decompositions based only on betweenness centrality can lead to inefficient 

results in terms of system reliability analysis. The problem worsens especially for nodes consisting 

of routes have high centrality but low reliability. The likelihood of these identified disjoint sets is 

so small that these sets rarely contribute to the convergence of bounds. In the proposed algorithm, 

centrality reflects both the reliability of components and network topology to prevent such incom-

petent cases. An arc weight graph 𝐺 = (𝑁, 𝐴) representing the target lifeline network is composed 

of the node set 𝑁 including node-type elements and link-type elements and the arc set 𝐴 contain-

ing the information about the network topology and the failure probability of the arrival nodes. 

Since the arc weights are for comparting the relative reliability of each path, the omission of the 

failure probability of the origin node does not affect the result. In the graph constructed in this 

way, the most reliable paths are identified first as S-RDA. When arranging nodes in the identified 
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paths, they are sorted in descending order of centrality, not following component numbering 

choice. This simple ordering change makes the nodes with a high likelihood belong to cut sets to 

be removed first, resulting in huge computational savings as fewer subgraphs are created. 

However, if the centralities of the origin and destination nodes are too low, the performance 

of CS-RDA is almost no different from that of S-RDA. In these cases, one can achieve the same 

goal through fewer decompositions by assigning more weights to the origin and destination nodes, 

named weighted CS-RDA or wCS-RDA. In this process, the property of betweenness centrality, 

i.e., each shortest path is taken into account in measuring the centrality of all nodes, play an im-

portant role because we do not need to weight all nodes. 
 

5 Numerical Examples 

In this section, two numerical examples are used to demonstrate the improvement by CS-RDA. 

To compare the efficiency of each algorithm, the number of disjoint sets and computational times 

required to achieve the target bound width of 0.1% and 0.001% respectively are presented. The 

first example deals with a hypothetical network in Figure 2(a) with 42 node-type elements and 85 

link-type elements. The failure event of the 𝑖th component and its probability is formulated as 

𝐸𝑖 = {𝑧𝑖 ≤ 0} = {𝑅𝑖 − 𝑆𝑖 ≤ 0} (10) 

𝑃𝑓𝑖
= Φ(− 𝐸[𝑧𝑖] 𝜎[𝑧𝑖]⁄ ) (11) 

where 𝑅𝑖 represents the capacity of the 𝑖th component which follows the normal distribution with 

mean 1.5 and standard deviation 0.4, 𝑆𝑖 represents the demand of the 𝑖th component which follows 

the normal distribution with mean 0.48 and standard deviation 0.3, and 𝑧𝑖 is the difference between 

𝑅𝑖 and 𝑆𝑖. Capacities and demands are assumed to be statistically independent, respectively. The 

second example deals with a real highway network in eastern Massachusetts in Figure 3(a) with 

74 node-type elements only, whose failure probabilities are computed in the same manner as the 

previous example. In the second example, we compare the results of the O-D pair with and without 

weights to check the effect of weights. 

 

 
(a)  (b) (c) 

Figure 2. (a) Betweenness centrality of a hypothetical network, (b) the bounds on the system failure 

probability, and (c) the bound widths in terms of the number of disjoint sets (logarithmic scale) 

 

5.1    Hypothetical network 

Figures 2(b) and 2(c) show the bounds on the system failure probability and bound widths obtained 

by S-RDA and CS-RDA. As the number of disjoint sets increases, the difference between bound 

widths obtained by S-RDA and CS-RDA increases. In other words, a much smaller number of 

disjoint sets are needed to achieve a target bound width of 0.1% when using CS-RDA. Table 1 

shows the bounds on system failure probability, the number of disjoint sets and computational 
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time for each algorithm. The number of disjoint sets and computational time needed for CS-RDA 

to achieve the target bound width is about 1/3 of that needed for S-RDA. We can simply estimate 

the system failure probability using Monte Carlo simulations, but its computational time is quite 

long in comparison with other non-simulation methods. 

 
Table 1.  The results of system reliability analysis (SRA) for a hypothetical network 

 

SRA Algorithm 
Bounds on the system 

failure probability (𝑃𝑓) 
# of disjoint sets Time (s) 

M.C.S. (δ = 0.1%) 0.0469 - 2032 

S-RDA 0.0468~0.0478 4,828 6.276 

CS-RDA 0.0467~0.0477 1,520 2.128 

 

  
(a) (b) 

Figure 3. (a) Betweenness centrality of Eastern Massachusetss highway network without weights, 

and (b) with weights to the origin and destination nodes 

 

 
(a) (b) 

Figure 4. (a) The bounds on the system failure probability, and (b) the bound widths in terms of the number 

of disjoint sets (logarithmic scale) in Eastern Massachusetss highway network 

 

5.2    Eastern Massachusetts highway network 

In this network example, the betweenness centralities of the nodes located on the most reliable 

path between the given O-D pair is relatively low as seen in Figure 3(a). In this case, wCS-RDA 

works more effectively as mentioned above. Figure 3(b) shows that betweenness centralities as-

signing more weights to the origin and destination nodes for wCS-RDA. Table 2 shows the bounds 
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on system failure probability, the number of disjoint sets and computational time for each algo-

rithm. Figures 4(a) and 4(b) visualize these results. Although the target bound width is much 

smaller than that of the hypothetical network, fewer disjoint sets are needed because the network 

size is small compared to the previous network. However, it is clear that wCS-RDA can improve 

CS-RDA even though CS-RDA still shows higher efficiency than S-RDA. Monte Carlo simula-

tions require excessively large calculation time in this example as well. 

 
Table 2. The results of SRA for the Eastern Massachusetts highway network 

 

SRA Algorithm 
Bounds on the system 

failure probability (𝑃𝑓) 
# of disjoint sets Time (s) 

M.C.S. (δ = 0.1%) 0.07963 - 1156 

S-RDA 0.07961~0.07962 537 0.6198 

CS-RDA 0.07961~0.07962 358 0.4634 

wCS-RDA 0.07961~0.07962 224 0.3704 

 

6 Conclusions 

In this paper, a centrality-based selective recursive decomposition algorithm (CS-RDA) is devel-

oped for efficient reliability analysis of large-scale networks in real life, which cannot be handled 

by existing non-simulation-based algorithms. For this purpose, the number of components that 

make up disjoint sets is minimized. As the lengths of disjoint sets are minimized, not only the 

expected value of the number of subgraphs decomposed reduces, but also the probability of each 

disjoint set increases. To eliminate the redundancy of these sets, nodes on the most reliable paths 

are sorted in descending order of betweenness centrality. Moreover, the efficiency can be further 

improved by assigning more weights to the origin and destination nodes especially when these 

nodes have low centralities. The computational cost by CS-RDA allows for more detailed network 

reliability analysis and expand the range of large-scale networks that can be addressed by non-

simulation-based approaches. The numerical examples successfully demonstrate the efficiency of 

the proposed methodology. 
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