
Proc. of the 8th Intl. Symp. on Reliability Engineering and Risk Management (ISRERM 2022)

Edited byMichael Beer, Enrico Zio, Kok-Kwang Phoon, and Bilal M. Ayyub

©2022 ISRERM Organizers. Published by Research Publishing, Singapore.

doi: 10.3850/978-981-18-5184-1_MS-08-062-cd

Maintenance Decision-making for Infrastructure Systems Using 
Clustering-based Cooperative Multi-Agent Deep Q-Network  

D. Lee1, J. Song�,1 

1Department of Civil and Environmental Engineering, Seoul National University, Republic of Korea 

Abstract 

As infrastructure systems such as transportation and water distribution networks deteriorate due to aging and corrosion, 
decision-makers need to assess the system-level risk to devise an appropriate operation plan to minimize the losses caused 
by system failure over the lifecycle. Recently, Markov Decision Processes (MDP) has been utilized to identify optimal 
decision-making policies efficiently. However, in complex systems consisting of many components, it is often intractable 
to find the best solutions because the numbers of state and action spaces increase exponentially. To overcome the curse 
of dimensionality, this study develops a multi-agent deep reinforcement learning framework termed Clustering-based 
Cooperative Multi-Agent (CCMA) Deep Q-Network. CCMA takes a divide-and-conquer strategy, which identifies 
multiple subsystems by clustering and assigns an agent to each subsystem. Each agent observes states of the structures 
within the corresponding cluster to pursue appropriate actions and share information about the cluster with other agents. 
A numerical example demonstrates that the proposed method outperforms conventional maintenance schemes and 
subsystem-level optimal policies. 

Keywords: Deep reinforcement learning, Infrastructure system, Life-cycle cost, Markov decision process, Operation 
and maintenance 

1. Introduction 
Components in civil infrastructure systems, such as 

pipelines and electric wires deteriorate over their life-cycle 
due to corrosion of materials and other environmental 
factors, thereby affecting the usability and serviceability of 
the systems. As the performance of a structure is in decline, 
not only does the cost of maintenance and repair increase, 
but also structure failures can cause a system-level failure 
event (e.g., power outage or disruption). As these 
infrastructure system failures can cause enormous socio-
economic damage, apposite operation and maintenance 
(O&M) policies are required. 

For O&M of infrastructures, various maintenance 
strategies have been developed: from time-based 
maintenance (TBM), in which maintenance is undertaken 
based on predetermined repair time-intervals, to condition-
based maintenance (CBM), in which preventive 
maintenance is performed before the failure occurrences 
based on the information acquired or interpreted in various 
forms [1]. Since TBM does not require monitoring or 
criteria evaluation, the cost for observation and analysis 
can be saved. However, TBM cannot cope with the events 
that affect the lifespan of structures, such as natural 
disasters. In contrast, CBM shows superior performance in 
the long term despite some additional costs for monitoring. 

As these conventional schemes are considered at a 
single-component level, it is difficult to extend them to 
decision-making procedures to handle system failures. No 
matter how well defined, the component-level optimality is 
not sufficient to ensure the system-level optimality [2]. 
Therefore, decision-makers should establish an O&M 
policy considering both the component- and system-level 
conditions. A Markov decision process (MDP) is a 
preferred option for system O&M owing to its capabilities 
of stochastic decision optimization [3]. However, there is a 
fundamental limit in direct application of the MDP to 
system-level policy establishment because of the curse of 

 
� E-Mail: junhosong@snu.ac.kr 

dimensionality, in which the state and action spaces 
increase exponentially in proportion to components within 
systems. 

Recent studies investigated and employed a decision-
making framework using deep reinforcement learning 
(DRL), termed Deep Q-Network (DQN), to tackle MDP 
environments with large numbers of states and actions [4], 
[5]. Recently, the field of application of DRL has been 
expanded and now includes life-cycle optimization of 
infrastructure systems [2], [6], [7]. However, these studies 
still cannot overcome the curse of dimensionality in real-
scale infrastructure systems. 

To address this issue, in this study, we propose a 
Clustering-based Cooperative Multi-Agent (CCMA) Deep 
Q-Network, in which each agent independently provides 
an optimal life-cycle policy in the assigned subsystem and 
communicates system information with other agents to 
avoid local optima. To this end, some of the penalty for 
system-level events (e.g., disconnection or flow reduction) 
is assigned to individual subsystems, which help the 
independently operating agents to find the system-level 
optimal policy. 

This study is organized as follows. Section 2 explains 
the MDP concept as a background for deep reinforcement 
learning and introduces DQN. Section 3 introduces multi-
agent reinforcement learning and proposes the CCMA 
algorithm. The algorithm is demonstrated and tested by a 
numerical example in Section 4. Finally, Section 5 
provides a summary and concluding remarks. 

2. Deep reinforcement learning 

2.1 Markov decision process 
A Markov decision process (MDP) is a mathematical 

framework to represent and solve stochastic decision-
making problems. A Markov decision process is a 5-tuple 

 where  is a set of states,  is a set of 
actions,  is the transition probability, 

226



227Proc. of the 8th International Symposiumon Reliability Engineering and Risk Management (ISRERM 2022)

 is the reward function, and  is the 
discount factor. An MDP is essentially an extension of 
Markov chains, and has the Markov property, i.e., once an 
agent adopts a possible action  in state  the transition 
probability  depends only on the state  and 
action , not on the history of the previous states or 
actions. Furthermore, the agent receives a reward  
that is a function of the state  and the action  The 
agent’s goal is to maximize the future discounted returns to 
the time horizon  

 

 
Figure 1. Graph of a Markov decision process (MDP) model. 

In a stochastic environment, however, assessment of 
the adequacy of actions in each state using a single 
decision-making sequence may introduce a bias. To 
address this issue, the future discounted returns under a 
specific policy  are quantified by the following 
conditional expectation given the state  and the action  
termed Q-value: 

 

where a policy  is a mapping from the state  to 
the action  (or a vector representing the probability 
distribution for actions under state ).  

For policy  the existence and uniqueness of Q-value, 
 is guaranteed in all states if  and dynamic 

programming (DP) is generally considered as the only 
feasible method to evaluate the exact  in stochastic 
optimal control problems [8]. DP algorithms iteratively 
update the Q-value by the Bellman equation [9], which is 
recursively derived from Eq. 1 as 

 

where  is 
the value function, which is the expected future discounted 
returns on the state  under the policy  

2.2 Q-learning algorithm 
Many MDP algorithms have been developed to find the 

optimal policy  maximizing Q-values for all  For 
this purpose, Watkins and Dayan [5] suggested the Q-
learning algorithm, in which an agent keeps choosing the 
action having the highest Q-value for all  

With sufficient exploration and exploitation, the Q-
learning algorithm is indeed guaranteed to find the optimal 
policy for any finite MDP [8]. For efficient exploration and 
exploitation, the -greedy algorithm is often implemented: 

after initializing Q-value to zero, an agent selects a random 
action (i.e., exploration) with probability  or the action 
maximizing Q-value (i.e., exploitation) with probability 

 It is common to start  at a high value close to 1, and 
gradually decrease it as information about the environment 
accumulates. Then, Q-value is iteratively updated as 

 

where  is the Q-value on state  and action  
estimated at the  iteration; 

 is the target value; and  is the 
learning rate. 

2.3 Deep Q-Network 
In an environment with large sets of states and actions, 

however, the Q-learning algorithm may suffer because the 
computational cost grows exponentially with the number 
of possible states and actions. In the worst case, the Q-
learning algorithm is intrinsically incapable in certain 
environments, e.g., an environment with continuous states 
and actions. Due to the low scalability, it is infeasible to 
evaluate the exact action-value function for every state-
action pair in complicated environments. 

To address this issue, Mnih et al. [10] introduced a 
powerful deep reinforcement learning (DRL) framework, 
where a deep neural network called deep Q-Network (DQN) 
approximates Q-value. In DQN, each layer outputs a linear 
combination of inputs and parameters, and activation 
functions between layers, including Sigmoid or rectified 
linear unit (ReLU), model complex nonlinear relationships. 
At the  iteration, the loss function  of DQN is 
given as 

 

where  are the parameters of DQN; 
 is the target value based on DQN; 

and  is a parameterized Q-value on state  
and action  Then,  are updated to minimize the loss 
function  in Eq. 4 by gradient descent as 

 

To stabilize the training procedure, Mnih et al. [11] utilized 
two innovative ideas: (1) experience replay [12], and (2) 
periodic updates of a target network. For experience replay, 
agents store experiences as tuples  in 
a replay buffer. At each training iteration, DQN is updated 
based on a batch of uniformly sampled tuples from the 
replay buffer instead of the latest experiences, so that the 
correlations between the experiences greatly decrease. In 
addition, a target network with parameters  is 
introduced to compute the target value , and the 
parameters  are periodically updated to  every  
steps. Combining these two techniques, Eqs. 4 and 5 can 
be modified respectively as 

 

 

where  is the target 
value based on the target network with  



228 Proc. of the 8th International Symposiumon Reliability Engineering and Risk Management (ISRERM 2022)

2.4 Multi-agent reinforcement learning 
DRL can learn the complex environment and draw 

near-optimal policies in large spaces of states and actions. 
Although DRL could handle problems more efficiently, the 
curse of dimensionality is not fundamentally overcome and 
still hinders finding the optimal maintenance policies. To 
overcome this challenge, a divide-and-conquer strategy 
based on multi-agent reinforcement learning (MARL), in 
which agents decide independently or cooperatively to 
obtain their respective maximum rewards, can be a 
breakthrough in terms of scalability. 

 

 
Figure 2. Independent Q-learning (IQL) architecture. 

The simplest way to implement MARL is independent 
Q-learning (IQL) [13], in which each agent observes its 
local state and improves the solution independently as 
illustrated in Fig. 2. Since IQL is a fully decentralized 
MARL algorithm, the size of the state and action space is 
shrunk from  to  and from  to 

 respectively, where  is the number of agents; 
 is the size of the state space observed by agent  and 
 is the size of the action space for agent  As a result, 

the algorithm is scalable for environments with large 
spaces of states and actions. 

In general, IQL shows superior performance compared 
to Q-learning algorithms with single-agent. However, there 
are some fatal issues in applying IQL to complex 
environments. The environment becomes non-stationary 
from each agent’s point of view due to other learning 
agents [14] and does not satisfy the Markovian assumption 
required for the stability of Q-learning algorithms. This 
non-stationarity results in a gap between existing 
experiences and the current state, thereby rendering 
experience replay useless and inhibiting DQN learning. 

Moreover, even if IQL overcomes the challenges and 
finds the optimal actions for each component, the obtained 
reward has a significant difference from the sum of the 
expected Q-values because of system-level rewards and 
interaction among components. In other words, the 
optimality of the policies detected by IQL is not guaranteed. 

3. Clustering-based cooperative multi-agent Deep Q-
Network 

In O&M for large-scale civil infrastructure systems, 
decision-makers should consider both the damage and 
destruction of individual structures throughout systems. 
Even if the performance degradation appears insignificant 
at the level of individual structures, the accumulated 
damage can cause incomparably mortal socio-economic 
loss at the system level. 

For the integrated management of infrastructure 
systems to prevent both component-level and system-level 
damage, it is necessary to consider all state and action 
combinations of components. As mentioned above, it is the 
main reason the existing DRL algorithms cannot handle 
large-scale systems. Therefore, a multi-agent-based 
algorithm is required to make up for the limitation of IQL 
while preserving its scalability. Depending on the amount 
of information shared, there is a trade-off between the 
optimality and the curse of dimensionality: convergence 
for system-level optimal solutions versus the loss of 
computational efficiency, which is the greatest advantage 
of MARL. 

To this end, we introduce a Clustering-based 
Cooperative Multi-Agent (CCMA) Deep Q-Network for 
efficient O&M policy decision-making within large-scale 
systems in this study. In CCMA, decision-makers identify 
multiple subsystems from the initial system through 
clustering and assign an agent to each of the identified 
subsystems. All the agents make decisions to maximize the 
Q-values of the subsystem allocated to each, but the system 
penalty is additionally granted at the subsystem level. To 
determine whether each cluster is at fault for the imputed 
penalty, agents use the modified reward term as 

 

where  represents the cluster;  is the modified 
reward for the cluster; and  is the state set of all 
components in the system;  is the action 
set for the components in the cluster with  denoting 
the number of components in the cluster;  is the 
reward for state  and action  of the  component;  
is the hyperparameter that determines how much weight is 
given to the imputed system penalty; and  is the 
system penalty imputed to the cluster, which is denoted 
as follow in this study: 

 

where  is a cost function of the flow loss;  is the 
flow loss in the cluster; and  is the flow loss in the 
system. 

Each agent is trained by DQN, which accompanies 
experience replay and periodic updates of the target 
network introduced in Section 2.4 to maximize their 
respective rewards. 

4. Numerical example 
In this section, a numerical example is presented to 

demonstrate the performance of CCMA: the 15-component 
distribution system with an origin/destination (O/D) pair in 
Fig. 3. All homogeneous components have five damage 
states: no damage, slight damage, moderate damage, 
extensive damage, and collapse. The flow capacity of each 
component for each state is 1, 0.95, 0.5, 0.25, and 0. We 
consider two types of available maintenance actions per 
component: do nothing or repair. The stationary transition 
probabilities of each component for the deterioration (i.e., 
‘do nothing’) and repair are given as Eqs. 10 and 11, 
respectively. 



229Proc. of the 8th International Symposiumon Reliability Engineering and Risk Management (ISRERM 2022)

 

 

 

 
Figure 3. 15-component distribution system. 

Although there is no limit to the number of components 
that can be repaired per time step, a reward of “�1” is given 
for each repair. In addition, when the maximum flow 
between the O/D pair decreases, the system is penalized by 
5 times the amount of flow loss, i.e.,  The 
system’s life-cycle period is set to 50 steps (years) with a 
discount factor of  . 

In this example, it is impossible to find the optimal 
solution due to the curse of dimensionality; the number of 
states  and the number of actions  are  and , 
respectively. To confirm the superiority of CCMA, some 
maintenance schemes are implemented as baseline policies 
instead of the optimal solution: CBM scheme (i.e., 
component-level optimal policy) and the subsystem-level 
IQL (S-IQL). Fig. 4 shows the three subsystems identified 
through clustering, which are commonly used in both S-
IQL and CCMA.  

 

 
Figure 4. 3 subsystems in 15-component distribution system. 

Fig. 5 shows the expected life-cycle costs obtained 
using CCMA, S-IQL, and CBM, respectively, by training 
over 2,000 episodes with 95% confidence intervals. Under 
the optimal CBM strategy, the expected life-cycle cost is 
constant regardless of the number of episodes because the 
agent repairs components according to the predetermined 

conditions. On the other hand, the expected life-cycle costs 
for S-IQL and CCMA consistently decrease as training 
progresses. Compared to CBM, these two methods based 
on reinforcement learning show much better performance. 

 

 
Figure 5. Life-cycle cost estimates and 95% confidence 
intervals during training for the distribution system. 

Table 1 provides the results of O&M policies found 
through each methodology: the repair cost, the cost due to 
the flow loss, and the total life-cycle cost. For the optimal 
CBM, the agent ignores the loss of O/D flow and repairs 
components exceeding extensive damage, thereby causing 
minimal repair costs but excessive flow loss between the 
O/D pair. On the other hand, as each agent at the 
subsystem-level IQL makes decisions to maximize its 
reward (or minimize the cost) including the penalty for the 
flow loss in the subsystem, a low level of the O/D flow loss 
is maintained with frequent repairs. Finally, CCMA 
successfully achieves a suitable balance point between 
these two baselines in terms of repair cost and the cost due 
to the flow loss, respectively. Compared to the S-IQL 
solution, the CCMA policy reduces the number of repairs 
slightly, but inhibits the increase in flow loss, which in turn 
lowers total life-cycle cost. 

Table 1. Comparison of CCMA with two baselines in terms of 
expected life-cycle costs. 

Algorithms Repair Flow loss Total cost 
CBM 12.73 59.35 72.08 
S-IQL 28.30 12.80 41.10 
CCMA 24.27 13.81 38.08 

 

5. Conclusions 
In this study, an optimal decision-making framework 

based on deep reinforcement learning termed Clustering-
based Cooperative Multi-Agent (CCMA) Deep Q-Network 
was proposed for O&M planning of large-scale civil 
infrastructure systems. To overcome the curse of 
dimensionality due to exponentially increasing spaces of 
states and actions, CCMA identifies subsystems through 
clustering and assigns agents to the identified groups. Each 
agent observes the state of each subsystem and shares the 
system penalty, thereby cooperating for the economical 
and reliable operation of the system and converging to the 
optimal policy at system level instead of the component 
level. The proposed algorithm and two baseline policies 
were demonstrated by a 15-component network example. 
In the numerical example, CCMA achieved the best 
policies superior to those by the baseline policies by 
balancing two negatively correlated repair costs and cost 



230 Proc. of the 8th International Symposiumon Reliability Engineering and Risk Management (ISRERM 2022)

due to the flow loss. Further research is underway to 
achieve the scalability of the proposed algorithm to large-
size infrastructure systems and reallocate O&M policies 
effectively under budget constraints. 

Acknowledgment 
This work is supported by the Korea Agency for 

Infrastructure Technology Advancement (KAIA) grant 
funded by the Ministry of Land, Infrastructure and 
Transport (Grant 22RMPP-C163162-02) 

References 
 
[1]  B. de Jonge, R. Teunter and T. Tinga, “The influence of 

practical factors on the benefits of condition-based 
maintenance over time-based maintenance,” Reliability 
engineering & system safety, vol. 158, pp. 21-30, 2017.  

[2]  C. Andriotis and K. Papakonstantinou, “Managing 
engineering systems with large state and action spaces 
through deep reinforcement learning,” Reliability 
Engineering & System Safety, vol. 191, p. 106483, 2019.  

[3]  J. Wang, S. Hou, Y. Su, J. Du and W. Wang, "Markov 
Decision Process Based Multi-agent System Applied to 
Aeroengine Maintenance Policy Optimization," in 2008 
Fifth International Conference on Fuzzy Systems and 
Knowledge Discovery, 2008.  

[4]  K. Arulkumaran, M. P. Deisenroth, M. Brundage and A. A. 
Bharath, “Deep Reinforcement Learning: A Brief Survey,” 
IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26-
38, 2017.  

[5]  C. J. Watkins and P. Dayan, “Q-learning,” Machine 
learning, vol. 8, no. 3-4, pp. 279-292, 1992.  

[6]  C. P. Andriotis and K. G. Papakonstantinou, “Deep 
reinforcement learning driven inspection and maintenance 
planning under incomplete information and constraints,” 
Reliability Engineering & System Safety, vol. 212, p. 
107551, 2021.  

[7]  M. Memarzadeh, M. Pozzi and J. Z. Kolter, “Optimal 
planning and learning in uncertain environments for the 
management of wind farms,” Journal of Computing in Civil 
Engineering, vol. 29, no. 5, p. 04014076, 2015.  

[8]  R. S. Sutton and A. G. Barto, Reinforcement learning: An 
introduction, Cambridge: MIT press, 2018.  

[9]  R. Bellman, “Dynamic programming,” Science, vol. 153, 
no. 3731, pp. 34-37, 1966.  

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. 
Antonoglou, D. Wierstra and M. Riedmiller, “Playing atari 
with deep reinforcement learning,” arXiv preprint 
arXiv:1312.5602, 2013.  

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. 
Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. 
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, 
I. Antonoglou, H. King and D. Ku, “Human-level control 
through deep reinforcement learning,” nature, vol. 518, no. 
7540, pp. 529-533, 2015.  

[12] L. J. Lin, “Self-improving reactive agents based on 
reinforcement learning, planning and teaching,” Machine 
learning, vol. 8, no. 3-4, pp. 293-321, 1992.  

[13] M. Tan, “Multi-agent reinforcement learning: Independent 
vs. cooperative agents,” in Proceedings of the tenth 
international conference on machine learning, 1993.  

[14] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. 
Torr, P. Kohli and S. Whiteson, “Stabilising experience 

replay for deep multi-agent reinforcement learning,” in 
International conference on machine learning, 2017.  

 
 


