
Reliability Engineering and System Safety 239 (2023) 109512

Available online 17 July 2023
0951-8320/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Risk-informed operation and maintenance of complex lifeline systems using 
parallelized multi-agent deep Q-network 

Dongkyu Lee , Junho Song * 

Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea   

A R T I C L E  I N F O   

Keywords: 
Deep reinforcement learning 
Lifeline systems 
Life-cycle cost 
Markov decision process 
Operation & maintenance 
Parallel processing 

A B S T R A C T   

Lifeline systems such as transportation and water distribution networks may deteriorate with age, raising the risk 
of system failure or degradation. Thus, system-level sequential decision-making is essential to address the 
problem cost-effectively while minimizing the potential loss. Researchers have proposed to assess the risk of 
lifeline systems using Markov decision processes (MDPs) to identify a risk-informed operation and maintenance 
(O&M) policy. In complex systems with many components, however, it is potentially intractable to find MDP 
solutions because the numbers of states and action spaces increase exponentially. This paper proposes a multi- 
agent deep reinforcement learning framework, termed parallelized multi-agent deep Q-network (PM-DQN), to 
overcome the curse of dimensionality. The proposed method takes a divide-and-conquer strategy, in which 
multiple subsystems are identified by community detection, and each agent learns to achieve the O&M policy of 
the corresponding subsystem. The agents establish policies to minimize the decentralized cost of the cluster unit, 
including the factorized cost. Such learning processes occur simultaneously in several parallel units, and the 
trained policies are periodically synchronized with the best ones, thereby improving the master policy. Nu-
merical examples demonstrate that the proposed method outperforms baseline policies, including conventional 
maintenance schemes and the subsystem-level optimal policy.   

1. Introduction 

Components in civil infrastructure systems, such as bridges, pipes, 
and electric wires, deteriorate over the life cycle of the systems due to 
corrosion of materials and other environmental factors. Component 
failures caused by the degradation may trigger a system-level failure 
event, e.g., power outage, service disruption, loss of network connec-
tivity, or degenerate the systems’ the quality of service (QoS) like us-
ability and serviceability [1]. Since civil infrastructure systems, 
especially lifeline systems including power, water, or gas transmission 
systems, have a great impact on modern societies, not only can each 
failure cause huge socio-economic losses, but system-level malfunctions 
multiply the damage exponentially. To quantify the risk uncertainty of 
these system elements, numerous studies on risk modeling based on 
stochastic processes have been conducted [2,3]. Based on these modeled 
risk, decision-makers should establish apposite risk-informed operation 
and maintenance (O&M) policies considering the inevitable changes in 
system-level QoS and the consequences of system failure [2,4]. 

Various O&M strategies have been developed for structures in civil 

lifeline systems. For example, time-based maintenance (TBM) un-
dertakes maintenance based on the predetermined repair time intervals, 
i.e., without monitoring or criteria evaluation [5,6]. On the other hand, 
condition-based maintenance (CBM) aims to perform preventive main-
tenance based on the information acquired or interpreted in various 
forms [6,7,8,9]. Although it is straightforward to scale and apply these 
O&M schemes to multiple components, the introduction of exogenous 
variables such as the cost of system failure events hampers their direct 
extensions to system-level decision-making processes. This is because 
component-level optimality does not ensure the optimal decisions at the 
system level [10]. Therefore, stakeholders and decision-makers of civil 
lifeline systems should be able to establish an O&M policy based on the 
system-level performance rather than on the conditions of individual 
components during the life cycle. 

For O&M policy planning for a system consisting of components 
subject to uncertain failures, classical theories of system reliability [11, 
12,13] often introduce a Markovian model to handle the characteristics 
of the components and the system. If the same system control policy is 
applied over the life cycle, stationary conditions are achieved after a 
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warm-up period. Thus, the system availability can be expressed as a 
closed-form expression under the assumption that components have 
constant mean failure rates [13]. However, such an O&M policy based 
on the steady-state assumption is not flexible enough to cope with many 
plausible exceptions in practice, e.g., an old road facing its service life. 

In efforts to obtain optimal O&M decisions without special as-
sumptions such as steady-state conditions in a finite time horizon, a 
Markov decision process (MDP) has been considered as a preferred 
framework to formulate the stochastic processes of structural deterio-
ration and the risk-informed O&M optimization. Because of the capa-
bility to quantify the expected cost or value of various maintenance 
actions in each state through dynamic programming, MDPs have been 
applied to establish the O&M policies for multi-state systems [14,15] as 
well as component-level policies [16] for civil infrastructures. Although 
MDPs have a fundamental limit in direct applications to large systems 
due to the curse of dimensionality, i.e., the state and action spaces in-
crease exponentially with the number of the components, researchers 
have proposed relaxing constraints or seeking approximate solutions 
[17,18]. 

In particular, to overcome the challenges, recent studies have applied 
many deep reinforcement learning (DRL)-based algorithms [19,20,21, 
22] to maintenance optimization problems in civil infrastructure sys-
tems [23,24,25]. More specifically, Yang et al. [26] utilized a deep 
Q-learning (DQN) framework for the optimal CBM planning of a 
multi-state system, and the framework has been further refined with the 
introduction of double DQN (DDQN) [27,28,29]. Moreover, multi-agent 
reinforcement learning (MARL) [30,31,32,33], in which multiple agents 
learn policies to achieve the minimum costs using DRL, has been 
considered to improve the scalability of DRL applications for optimizing 
the maintenance of civil systems. For example, Andriotis and Papa-
konstantinou [10,34] have developed centralized or decentralized 
MARL-based algorithms, respectively, in terms of sharing or not sharing 
parameters related to each agent’s policy for large civil systems. Zhou 
et al. [35] also proposed MARL-based hierarchical algorithms to opti-
mize the O&M decisions of large-scale multi-component systems. To 
enhance the performance of MARL, Nguyen et al. [36] introduced a 
value decomposition network (VDN) algorithm [32,37], decomposing 
the centralized Q-value into the sum of decentralized Q-values defined 
for individual agents, to find the best O&M decisions. However, 
although these MARL algorithms successfully reduce the computational 

complexity, model training or hyperparameter tuning still requires 
considerable time even in the relaxed environment. In the numerical 
examples where the existing MARL methods are applied, the topologies 
are quite monotonous, such as series- or parallel-systems, and the 
number of components is also limited. 

In this paper, we propose a parallelized multi-agent deep Q-network 
(PM-DQN), a divide-and-conquer algorithm that utilizes clustering- 
based multi-scale approaches [38,39], for risk-informed decision opti-
mization of multi-state flow systems by combining the system simplifi-
cation with MARL based on parallel processing. In PM-DQN, the agents 
observe the states of multiple subsystems identified by clustering, and 
learn decentralized policies to minimize the factorized cost for sub-
systems. The algorithm guides the decentralized policies chosen by the 
agents toward the system-level optimality by repeating the learning 
process through parallel processing and tuning a key hyperparameter 
based on the results with less computational cost. As a result, the 
PM-DQN can efficiently manage large systems that are out of control in 
existing approaches. 

This paper is organized as follows. Section 2 provides a description of 
the problem setting and the model assumptions for numerical examples, 
discusses the system-level sequential decision-making optimization 
problem, and introduces the DDQN and MARL frameworks. Section 3 
proposes the PM-DQN algorithm based on the configuration of sub-
systems based on community detection and the cost factorization. The 
efficiency and superior performance of the proposed algorithm are 
demonstrated by numerical examples in Section 4, followed by a sum-
mary and concluding remarks in Section 5. 

2. Background information 

2.1. Problem statement 

A finite-time Markov decision process (MDP) shown in Fig. 1 is 
defined as a five-tuple (S,A,T,C, γ), the elements of which are described 
below. 

2.1.1. Descriptions of system state 
In this study, we consider a multi-state flow system with n compo-

nents. It is assumed that the initial state of each component is intact, i.e., 
as-good-as-new (AGAN) state. The degradation level of components is 
identified as one of the following discretized damage states through 
annual observations: AGAN, slight damage, moderate damage, extensive 
damage, and collapse. We assume that the system state is observed 
without errors. The system degradation state St = [si

t ]i∈[1,n] is given as a 
vector of component states, where si

t is the state of component i ∈ [1, n] at 
time t.

As a performance indicator, the maximum flow capacity between 

Fig. 1. Graph of a Markov decision process (MDP) model.  

Table 1 
Flow capacity of each component for each damage state.  

Damage state AGAN Slight Moderate Extensive Collapse 

Flow Capacity 1.00 0.95 0.50 0.25 0  
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two predetermined terminals is used to quantify the QoS of the system. It 
is assumed that the flow capacity of all components depends on each 
state as shown in Table 1. Once the flow capacities of all components are 
determined, i.e., the system state St is observed, the loss of the system 
QoS, Lsys(St), can be calculated as the difference between the current 
maximum flow capacity and the maximum flow capacity under the 
initial system state through the max-flow algorithm [1,40,41]. 
Depending on the topology of the system, each component’s flow ca-
pacity loss due to the deterioration has a different effect on the QoS of 
the system. 

2.1.2. Descriptions of maintenance and degradation process 
Based on the system state information, the agent chooses one of the 

two options for O&M action ai
t for the component i ∈ [1, n] at time t, i.e., 

‘Do Nothing (DN)’ and ‘Repair it to AGAN state (R).’ System-level action 
At = [ai

t ]i∈[1,n] is defined as a vector of the actions taken for individual 
components. Although the size of the action space seems small at the 
component level, the number of system-level actions that a decision- 
maker considers each year is 2n, which increases exponentially with 
the number of components. 

We assume that there is no limit to the number of components that 
can be repaired per step. When the decision-maker selects R for one 
component, the state becomes the AGAN state deterministically, 
otherwise it remains the same or deteriorates with a certain probability 
called state-transition probability T. The stochastic degradation process 
of individual components is modeled as an independent discrete-time 
Markov process. That is, the state-transition probability T(si

t+1
⃒
⃒si

t , ai
t)

for component i ∈ [1, n] depends only on the current state si
t and action 

ai
t , due to its Markov properties. While the state-transition probabilities 

for R are the same for all components, the state-transition probabilities 
for DN are modeled in two ways depending on the component types, 
each shown as 5 × 5 matrices in the Appendix A. Once the system-level 
action At for all components is determined in system state St , we can 
define the system-level state-transition probability T(St+1|St ,At) based 
on the state-transition probabilities T(si

t+1
⃒
⃒si

t , ai
t) for all components. 

2.1.3. Descriptions of operation and maintenance costs 
In the O&M process of civil lifeline systems, various variables (e.g., 

maintenance costs, system QoS, component malfunction) must be 
considered simultaneously at each time step. Because of trade-offs be-
tween life-cycle costs and the risk of systems, there is often no single 
solution that optimizes all these variables simultaneously. It is necessary 
to find an appropriate compromise among the conflicting goals. In multi- 
objective optimization, one can explore Pareto-optimal solutions that 
cannot improve an objective function without degrading other objective 
functions [42]. However, to make a decision among Pareto-optimal 
solutions, the subjective preference of decision-makers must intervene 
inevitably. 

One can handle this issue by transforming multiple objective func-
tions into a single objective function through scalarization, i.e., the 
weighted sum formulation. In this approach, the optimal solution 
strongly depends on cost functions (or utility functions) used in the 
scalarization process. In this paper, the objective function ctot , which is 
the total cost at time t, is defined as the sum of the multiple objective 
functions scaled to cost as follows: 

ctot(St,At) =
∑

i

[
cM,i

(
ai

t

)
+ cS,i

(
si

t

)]
+ cSD(St), (1)  

where cM,i is the maintenance cost for the component i; cS,i is the cost due 
to the shutdown of the component i; and cSD is the system damage cost 
caused by the loss of system QoS. In Eq. (1), cM,i conflicts with the other 
operation costs; cS,i and cSD, which depend on the state of components 
and system, decrease with a conservative O&M decision, while cM,i 

incurred by repairs increases. Therefore, a suitable compromise between 

these costs is desirable. 
In numerical examples in Section 4, it is assumed that the mainte-

nance cost cM,i of 1.0 is imposed when ai
t is R regardless of si

t , and the 
shutdown cost cS,i of 1.0 is charged when component i reached the 
collapse state. Loss of the system QoS, Lsys(St), penalizes the system 
damage cost cSD by a factor of fSD as 

cSD(St) = fSD⋅Lsys(St) = fSD⋅
[
MFsys(S0) − MFsys(St)

]
, (2)  

where MFsys(St) is a function representing the maximum flow capacity 
between predetermined two terminals under system state St ; and S0 is 
the initial system state vector, i.e., every component is in AGAN state. 

If the cSD term in Eq. (1) is neglected, i.e., the objective function is 
given as a linear function of the component-level costs, the system-level 
optimization problem is decomposed into multiple component-level 
optimization problems. The optimal solutions to the subproblems pro-
vide the system-level optimum. In most cases, however, cSD given as a 
function of component state combinations is of great interest. Therefore, 
the objective function ctot cannot be decomposed into component-level 
decentralized costs. In other words, the number of combinable policies 
to explore for achieving a system-level optimal solution grows expo-
nentially with the system size. 

2.2. System-level sequential maintenance optimization 

In maintenance optimization problems for civil lifeline system, the 
agent’s goal is to determine a policy π(At |St) as a mapping from the state 
St to the action At to minimize the Q-value, defined as the expected total 
discounted costs to the system’s lifespan TLS as 

Qπ(St,At) = Eπ

[
∑TLS

k=t
γk− tctot(Sk,Ak)|St,At

]

, (3)  

where γ ∈ [0, 1] is the discount factor to convert future costs into present 
values. Just as the component-level optimality does not guarantee the 
system-level optimality, a greedy optimal decision at every time step 
cannot assure optimality over the long run in a finite-time horizon 
environment. This applies to sequential maintenance optimization 
problems for civil lifeline system O&M throughout the life cycle. An 
O&M policy π is defined to be better than or equal to another O&M 
policy π′ if and only if its expected cost is smaller than or equal to that of 
π′ for all states [43]. That is, the optimal O&M policy π∗ leads the 
Q-value Qπ∗ to its minimum. 

In value iteration [43,44], considering this point, the Q-value 
Qπ(St ,At) is updated by continuously choosing the action with the 
lowest Q-value as 

π∗(At|St) =

{
1, if At = argmin

A′
Qπ∗ (St,A′)

0, otherwise.
(4) 

After initializing all the Q-value estimates to zero, the values are 
updated iteratively according to the following Bellman equation: 

Qk+1(St,At) = ctot(St,At) + γ
∑

S′

[

T(S′|St,At)min
A′

Qk(S,A′)

]

, (5)  

where Qk(St ,At) is the Q-value on state St and action At estimated at the 
kth iteration. The value iteration algorithm works well in simple envi-
ronments but does not apply to environments with large state and action 
spaces. In particular, evaluating the Q-value of every combinable state- 
action pair in complex environments is nearly impossible. 

2.3. Double Deep Q-Network with prioritized experience replay 

To overcome the computational limitation, Watkins and Dayan [22] 
proposed to apply a model-free reinforcement learning algorithm called 
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Q-learning. In the Q-learning algorithm, instead of Eq. (5), the following 
equation is used to update Q-values iteratively: 

Qk+1(St,At) = Qk(St,At) + α⋅[yt − Qk(St,At)], (6)  

where α ∈ (0, 1) is the learning rate; and yt = ctot(St ,At) + γmin
A′

Qk(St+1,

A′) is the target value. 
The ε-greedy algorithm is often implemented to expedite the explo-

ration and exploitation process for Q-learning [43]. In detail, after 
initializing Q-value to zero, an agent selects a random action (i.e., 
exploration) with probability ε, or the action minimizing Q-value (i.e., 
exploitation) with probability 1 − ε. It is common to start with the value 
of ε close to 1 and gradually decrease it as information about the envi-
ronment accumulates. 

In a powerful deep reinforcement learning (DRL) framework devel-
oped by Mnih et al. [19,20], a parameterized deep Q-network (DQN) is 
introduced to approximate the Q-value. Each layer in the DQN outputs a 
linear combination of inputs and parameters. The framework introduces 
activation functions between layers, such as rectified linear unit (ReLU), 
exponential linear unit (ELU), and scaled ELU (SELU), to describe the 
complex relationships beyond linearity. However, DQN tends to un-
derestimate the Q-values in stochastic environments due to the ‘min’ 
operator in calculating the target value yt . Double DQN (DDQN) [27] 
performs the action selection and Q-value evaluation separately using 
two different DQNs (i.e., online and target networks), thereby avoiding 
the underestimation of the Q-values and stabilizing the learning process. 
The target value yt is rewritten as 

yt = ctot(St,At) + γQt

(

St+1, argmin
A′

Qo(St+1,A′; θk); θ−
k

)

, (7)  

where Qo is the Q-value estimated using the online network with pa-
rameters θk; and Qt is the Q-value estimated using the target network 
with parameters θ−k , respectively. The parameters θ−k are periodically 
updated to the parameters θk every C steps. 

In addition, one can introduce the experience replay [45], in which 
agents store the experiences as tuples et = (st , at , rt , st+1) in a replay 
buffer D, and update the online network parameters θk based on a batch 
of uniformly sampled tuples from the replay buffer. The uniformly 
drawn samples significantly reduce the variance of updates owing to the 
weakened correlation, thereby suppressing the oscillation or divergence 
of the parameters θk+1 during the training process. Combining these 
techniques, DDQN calculates the loss function L(θk) and updates the 
online network parameters θk+1 to minimize L(θk) by the gradient 
descent as follows: 

L(θk) = Eet∼U(D)

[
(yt − Qo(St,At; θk))

2]
, (8)  

θk+1 = θk −
1
2

α∇θk L(θk)

= θk + αEet∼U(D)

[
(yt − Qo(St,At; θk))∇θk Qo(St,At; θk)

]
, (9)  

where U(D) represents a uniform distribution over the replay buffer D;
and et is a batch of the tuples sampled from U(D).

Agents can gauge the importance of each experience by the temporal 
difference error (TD-error), i.e., the difference between the expected Q- 
values before and after the experience. In prioritized experience replay 
(PER) [46], the alternative sampling density h(⋅) of a batch of experience 
tuples et = (st , at , rt , st+1), which was uniformly distributed, is given as: 

h(et;α) =
|δt|

α
∑

t|δt|
α, (10)  

where δt = yt − Qo(St ,At ; θk) is the TD-error; and α ≥ 0 is an importance 
sampling hyperparameter, with α = 0 corresponding to the existing 
experience replay. The loss function L(θk) in Eq. (8) can be calculated 
more efficiently using importance sampling as follows: 

L(θk) = Eet∼U(D)

[
δ2

t

]
= Eet∼h

[

δ2
t ⋅

fU(et)

h(et;α)

]

= Eet∼h
[
δ2

t ⋅W(et; α)
]
, (11)  

where fU(⋅) denotes the probability mass function of the discrete uniform 
distribution; and W(et ; α) = fU(et)/h(et ; α) is the likelihood ratio to 
compensate for the bias caused by introducing the alternative sampling 
density h(et ;α). The initial learning process is highly non-stationary 
because the online and target networks have not been trained enough. 
Therefore, even if the estimate is slightly biased, stabilization should be 
the top priority at the beginning phase of learning, and importance 
sampling correction may be considered later. To this end, W(et ; α) in Eq. 
(11) is replaced by W̃(et ;α,β), defined as 

W̃(et; α, β) =
(

fU(et)

h(et; α)

)β

= (N⋅h(et;α))− β
, (12)  

where N is the number of experiences in the replay buffer D; and β ∈

[0, 1] is a hyperparameter controlling how much to compensate for the 
bias. As β is gradually annealed toward 1.0, starting from a low value (e. 
g., typically around 0.4 to 0.6), the bias is completely compensated. 
When combined, DDQN and PER exert a substantial synergistic effect, 
thereby neutralizing a significant portion of the existing limitations of Q- 
learning algorithms. 

2.4. Factorization in multi-agent reinforcement learning 

In addition to increasing the efficiency of DRL like DDQN with PER, 
dividing the original problem into multiple subproblems can be a more 
effective solution to overcome the curse of dimensionality caused by the 
exponentially increasing number of states and actions. A divide-and- 
conquer strategy called a multi-agent reinforcement learning (MARL) 
deploys multiple agents in each segmented state and action spaces, and 
the agents learn policies to achieve the minimum costs independently or 
through cooperation. 

If there are no cost functions that agents jointly contribute, a given 
environment can be simplified by decomposing it into several smaller 
independent environments [30,47]. In other words, the optimal decision 
set in sub-problems yields the same solution as the optimal global 
decision-making. Then, the size of the action space is shrunk from 
∏m

j=1

⃒
⃒Aj⃒⃒ to 

∑m
j=1

⃒
⃒Aj

⃒
⃒, where m is the number of agents, and |Aj| is rede-

fined as the number of available actions for the jth agent. As a result, one 
can handle environments with large spaces of states and actions based 
on the large scalability. 

However, in most of complex environments, cost functions take a 
combination of various states and actions as input, e.g., Eq. (1). This 
leads to the multi-agent credit allocation problem [33], in which the 
contributions of individual agents to the cost function must be accu-
rately inferred. To this end, the problem can be segmented into multiple 
independent environments by factorizing the centralized cost into the 
sum of decentralized costs through neural networks called value 
decomposition networks (VDNs) [32] or user-defined functions. No 
matter how sophisticated the original cost is segmented, accuracy loss is 
inevitable during the factorization process, thereby resulting in a 
trade-off between accuracy and scalability. 

3. Proposed algorithm: parallelized multi-agent deep Q-network 
(PM-DQN) 

The MARL method combined with DDQN and PER improves the 
scalability with minimal loss of accuracy, allowing the MDP framework 
to be applied to complex environments. However, as the number of 
components in the system increases, the accuracy loss of the MARL 
method gradually accumulates, eventually leading to a failure in 
optimal policy search. To alleviate the scalability issue, in this section, 
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we propose a novel MARL algorithm termed “Parallelized Multi-agent 
Deep Q-Network” (PM-DQN), which assigns multiple agents to sub-
systems based on community detection, and makes the agents explore 
decentralized cost-minimizing policies under various hyperparameter 
values in multiple processing units. The proposed algorithm consists of 
three steps differentiated from others as follows: (1) system simplifica-
tion based on network clustering for effective agent allocation, (2) 
factorization of centralized costs based on a predefined function, and (3) 
the hyperparameter tuning with parallel processing. Fig. 2(a) and (b) 
respectively illustrate the proposed algorithm’s microscopic and 
macroscopic structures of operations. 

3.1. Step 1: identification of subsystems based on community detection 

In optimizing MARL-based O&M strategies in large-scale systems, it 
is necessary to find an appropriate balance between minimizing accu-
racy loss and efficient reduction of the state and action spaces. To this 
end, we propose a decomposition of the system into a few subsystems, i. 
e., communities of components. By grouping deeply related components 
in terms of functionality or densely connected components into one 
subsystem, the existing system can be simplified into another system of 
subsystems. This can also lower computational complexity that may 
scale exponentially with the number of components, while minimizing 

loss of information. Various algorithms such as spectral clustering al-
gorithms [38,48] and Markov clustering algorithm [49,50] have been 
proposed for community detection. In this paper, the target system is 
represented by m subsystems instead of the existing n components based 
on the Girvan-Newman algorithm [39,51]. 

The Girvan-Newman algorithm sequentially removes edges with the 
highest edge-betweenness, which means the probability that the shortest 
paths between all node pairs in the graph go through the edge [52]. As 
edges with high edge-betweenness are removed, the entire graph rep-
resenting the system is divided into several isolated clusters, and the 
process of edge removal ends when all edges are removed. In 
Girvan-Newman algorithm, the modularity M is introduced to stop the 
process at an appropriate time [51]. The modularity represents the 
difference between the actual number of intra-cluster edges in the 
existing graph and the expected number of intra-cluster edges when 
reconstructing the graph while preserving the degree of each node, and 
is defined as 

M =
∑

c∈[1,nc ]

[
Lc

ne
−

(
kc

2ne

)2
]

, (13)  

where nc is the number of isolated clusters; ne is the number of edges in 
the graph; Lc is the number of intra-cluster edges in cluster c; and kc is 

Fig. 2. (a) Learning process using DDQN with PER in a processing unit, and (b) overall procedure of Parallelized Multi-agent Deep Q-Network (PM-DQN) algorithm.  
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the sum of degrees of the nodes in cluster c. Modularity is updated 
whenever an edge is removed, and when it is maximized, one can 
identify subsystems that are separated from each other. 

Once m subsystems in the target system are identified using the 
Girvan-Newman algorithm, we can assign an agent to learn the O&M 
strategy of each subsystem. However, there is a problem in utilizing the 
community detection result for PM-DQN; since all agents must be 

trained for optimal decision-making for the system-level optimal policy, 
the convergence of PM-DQN is governed by the slowest learning rate 
among agents (generally the agent with the largest state and action 
spaces). If components are concentrated in specific clusters, the learning 
time of the agents increases exponentially, thereby leading to a decrease 
in learning efficiency of PM-DQN. Therefore, a procedure for adjusting 
the subsystems to an even size is necessary. To this end, after initial 
grouping based on the Girvan-Newman algorithm, some components in 
the largest subsystem are reallocated to other neighboring subsystems. 
In this process, the number of edges connecting subsystems should be 
minimized to prevent loss of calculation accuracy due to system 
simplification. 

Fig. 3 shows a simplified California gas distribution system (modified 
from [53]) with 48 gas substations of two types and 60 bidirectional 
pipelines. It is assumed that the pipelines are intact during the lifetime of 
the system, and only the deterioration of the gas substations, whose 
states can be periodically identified, is considered. The system can be 
described by a graph model with 48 nodes and 60 edges. Table 2 shows 
how modularity and the number of detected clusters change with edge 
removal by the Girvan-Newman algorithm. As the edges are removed 
continuously, the number of clusters increases, but the modularity peaks 
at 8 clusters. However, the detected clusters consist of five to seven 
components as shown in Fig. 4(a), resulting in differences in the action 
space of the agents. Since the learning rate of the agent managing the 
largest subsystem is lower than that of the other agents, the benefits of 
parallel processing in simultaneous training of all agents can be 
underutilized. To compensate for this limitation, one component is 
reallocated from the largest subsystem to the neighboring smallest 
subsystem 3 as shown in Fig. 4(b), making the number of components 
within subsystems as uniform as possible. In contrast to the previous 
subsystems in Fig. 4(a), all subsystems in Fig. 4(b) consist of the same 
number of components, so the learning rate of the agent is expected to be 
similar. The needs for this procedure are discussed through numerical 

Fig. 3. California gas distribution system with 48 multi-state gas substations.  

Table 2 
Modularity and number of clusters according to edge elimination.  

No. of eliminated edge 0 1 3 7 11 13 15 18 

Modularity 0 0.443 0.565 0.685 0.689 0.673 0.647 0.608 
No. of clusters 1 2 4 6 8 10 12 14  

Fig. 4. (a) Subsystems detected by Girvan-Newman algorithm, and (b) subsystems with uniformly reallocated components.  
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examples in Section 4 by comparing the learning efficiency with or 
without the reallocation. 

3.2. Step 2: factorization of centralized costs 

After assigning one agent to each subsystem detected in Step 1, 
multiple agents make O&M decisions by comprehensively considering 
the state of components within each subsystem. To carry out the deci-
sion making independently but efficiently for all subsystems, the total 
cost ctot should be factorized into individual subsystems based on 
effective multi-agent credit allocation. For example, the total cost ctot in 
Eq. (1) is divided into two parts: decentralized costs (e.g., cM,i and cS,i)

and centralized costs (e.g., cSD). Since decentralized costs obviously arise 
from each component, it makes sense to impose the sum of decentralized 
costs of the components in a subsystem to the corresponding agent. 
However, allocating the centralized cost to individual agents requires 
the introduction of VDN or predefined functions. To this end, PM-DQN 
finds the subsystems that are presumed to cause the loss of system, 
and selectively allocates centralized costs to those subsystems based on a 
predefined function. More specifically, by splitting the centralized cost 
and summing up the decentralized costs, the total decentralized cost csubj 

for subsystem j, subj, is expressed as 

csubj

(
St, aj

t

)
=

∑

i∈subj

[
cM,i

(
aj

t

)
+ cS,i

(
si

t

)]
+ ωcf ,j(St), (14)  

where aj
t is redefined as the action chosen by agent j at time t; cf ,j is the 

factorized cost transferred from the centralized cost cSD to subsystem j;
and ω is the hyperparameter that determines the weight of the factorized 
cost. The factorized cost cf ,j is predefined as follows: 

cf ,j(St) = fSD⋅min
[
Lsys(St),Lj

(
Sj

t

)]
, (15)  

where Lj(⋅) is the QoS loss in the jth subsystem; and Sj
t is a subset of St ,

which is the state vector of components belonging to the jth subsystem. 
While Lsys is calculated based on the maximum flow capacity between 
two predetermined terminals, Lj is defined as the difference between the 
total inflow and outflow of the jth subsystem. The structure of Eq. (15) is 
similar to that of Eq. (2) before factorization, but individual agents infer 
the causality between QoS losses of system and their subsystems using 
the min operator. 

Using Eqs. (6), (7), (14), and (15), one can calculate individual Q- 
values Qj(St , aj

t) for each agent j. In this paper, we utilize the DDQN 
combined with PER (introduced in Section 2.3) for more efficient and 
stable Q-learning. More specifically, the online network with parameters 
θj and the target network with parameters θ−j for j ∈ [1,m] take the 
system state vector St and the current time step t as inputs, and 
respectively output the Q-values Qj

o and Qj
t according to each action in 

the form of vectors. Then, the optimal action based on the estimated Qj
o 

is converted into an |Aj|-dimensional one-hot encoding vector, which is 
multiplied with the vector form of Qj

t to update the online Q-value. 
Unlike these online parameters θj that are updated every step, the target 
network parameters θ−j are periodically updated to the online parame-
ters θj every C steps. It should be noted that, unlike VDN, the expected 
total life-cycle cost of the system Qsys is not equal to the sum of those 
caused by the factorized costs cf ,j [37]. As all agents choose the actions 
that minimize their respective Qj, the system-level action set At is 
redefined as 

At =

[

argmin
a

Qj(St, a)
]

j∈[1,m]

. (16) 

In the learning process of DDQN, the performance of the PM-DQN 
depends significantly on the hyperparameterω in Eq. (14). Therefore, 
the hyperparameter value should be appropriately determined 
depending on the environment (e.g., system topologies, O&M costs, 
discount factor γ). In addition, there is no way to find the optimal value 
analytically, while heuristics require substantial computational costs for 
j ∈ [1,m].

3.3. Step 3: parallel processing-based hyperparameter tuning 

For effective hyperparameter tuning, we introduce parallel process-
ing in the proposed algorithm. Processing units (e.g., CPUs or GPUs) are 
classified into five groups with different hyperparameter values. In each 
unit, agents explore the optimal decentralized policies using the 
ε-greedy algorithm simultaneously under each given hyperparameter ω,

as illustrated in Fig. 2(a). After training agents for a sufficiently large 
number of epochs, called a cycle, one can judge the superiority of pol-
icies based on hyperparameter values through the expected total life- 
cycle costs Qsys. Prior to the next cycle, the parameters of the online 
and target networks in all processing units, θj and θ−j for j ∈ [1,m], are 
synchronized with those showing the best performance in the previous 
cycle, as shown in Fig. 2(b), thereby contributing to improving the 
master policy. Through the synchronization process, some rarely 
explored near-optimal policies can be propagated to other processing 
units, resulting in significant performance gains. Then, hyperparameter 
ω is tuned as follows: 

ω←argminω[Qsys] + kλ, (17)  

where λ is an exponentially decaying step size; and k ∈ [− 2, 2]. In 
addition, when the expected life-cycle cost has sufficiently converged 
through comparison of results of the parallel processing, the algorithm is 
terminated early. Algorithm 1 provides a pseudo-code of the proposed 

Algorithm 1 
Parallelized Multi-agent Deep Q-Network (PM-DQN).  

Identify m subsystems through community detection and assign an agent to each 
subsystem 

Initialize replay buffer Dj for j ∈ [1,m]

Initialize the online network Qj
o with random parameters θj for j ∈ [1,m]

Initialize the target network Qj
t with random parameters θ−j = θj for j ∈ [1,m]

Initialize hyperparameters ω 
for cycle = 1 to ncyc do 

for processing unit = 1 to npu do 
for epoch = 1 to nepoch do 

Initialize state St = [Sj
t ]j∈[1,n] where Sj

t = [si
t ]i∈clj 

for t = 1 to TH do 
for j = 1 to m do 

Select action aj
t =

⎧
⎨

⎩

a random action, ε
argminaQj

o(S
j
t , a; θj), otherwise 

Observe Sj
t+1 , ccomp,i for i ∈ subj 

end 
Observe system damage cost cSD 

for j = 1 to m do 
Calculate the factorized cost for subsystem j, csubj 

Store experience ej
t = (Sj

t , a
j
t , csubj , Sj

t+1) in Dj with TD-error δj
t 

Sample minibatch of experiences ej
k with probability |δj

k|
α 
/
∑

t
|δj

k|
α 

from Dj 

Compute importance-sampling weight wj
k = (N⋅P(ej

k))
− β 

Compute target value yj
k = csubj + γQj

t

(

Sj
k+1,argmin

a∈A
Qj

o(Sj
k,a; θj); θ−j

)

Update δj
k←yj

k − Qj
o(Sj

k,a
j
k; θj)

Perform gradient descent on (δj
k)

2 
w.r.t. θj 

Update θ−j ←θj every C steps 
end 

end 
end 

end 
Synchronize the network parameters 
Tune hyperparameters ω←argminω[Qsys] + k⋅λ for k ∈ [ − 2,2]

end  
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PM-DQN algorithm. 

4. Numerical examples 

To demonstrate the proposed PM-DQN, we consider two numerical 
examples inspired by Andriotis & Papakonstantinou [10] and Stern et al. 
[53]: (1) a multi-state lifeline network system with 15 components and 
(2) the simplified California gas distribution system abovementioned. 
The life-cycle span of each system TLS is set to 50 steps (i.e., 50 years) 
with a discount factor of γ = 0.95. The coefficient fSD in Eqs. (2) and 
(15) for the system damage cost cSD is set to 5.0 in both examples. 

To build and implement our own custom environments, we use 
OpenAI Gym [54], a toolkit for reinforcement learning research. All 
experiments are performed using the Keras deep learning Python library 
[55] with Tensorflow backend [56] on a server with 2 Intel(R) Xeon(R) 
CPU Gold 6240R CPUs at 2.40 GHz and 256GB RAM. The online and 
target networks consist of three fully connected hidden layers, each with 
SELU activation functions per example. For stochastic gradient descent 
on the network parameter space, we use the Nesterov-accelerated 
Adaptive Moment Estimation (Nadam) optimizer [57], combining the 
Adaptive Movement Estimation (Adam) with Nesterov momentum [58]. 
DDQNs explore and exploit complex environments using the ε-greedy 
algorithm mentioned in Section 2.3, where the exploration probability ε 
decreases from 0.5 to 0 for every cycle along with the cosine function 
[59]. For model training based on parallel processing on multiple pro-
cessors, the multiprocessing library [60] is implemented. Appendix B 
provides more detailed information about hyperparameters for 
PM-DQN. 

Since it is intractable to obtain the optimal policy for these examples 
due to the curse of dimensionality, two conventional O&M schemes and 
two MARL methods are also implemented as baseline policies as follows 
to confirm the superior performance of the PM-DQN:  

• Condition-based maintenance (CBM): agents repair components that 
have deteriorated below optimized threshold states. Since the num-
ber of all combinable threshold cases is exponentially proportional to 
the number of components n, it is extremely time-consuming to 
evaluate the system life-time cost for all policies. In numerical 

examples, the optimal threshold state set is explored through itera-
tions that sequentially update the optimal threshold state of each 
component that minimizes the system life-cycle cost. The number of 
threshold combinations per iteration scales linearly with the number 
of components. 

• Time-based maintenance (TBM): agents periodically repair individ-
ual components, regardless of their state, at certain time intervals 
optimized for each component. To find the optimal repair intervals, 
we use iterations in the same form as CBM’s policy exploration.  

• Subsystem-level optimal maintenance (SOM): agents assigned to 
subsystems independently learn policies to minimize the cost of each 
subsystem in Eq. (14), where the factorized centralized cost cf ,j(St)

depends only on the QoS loss in the jth subsystem, cSOM
f ,j (Sj

t) = fSD⋅ 

Lj(Sj
t), instead of Eq. (15). Other than the factorized cost, the iden-

tified subsystems to which agents are assigned and the hyper-
parameters in Appendix B are shared with PM-DQN.  

• Deep Centralized Multi-agent Actor Critic (DCMAC) [10]: agents 
learn policies based on two separate neural networks, called 
actor-critic methods, each approximating a centralized policy func-
tion and the expected total life-cycle costs. Actions on individual 
components are learned conditionally independent of each other. 
The details of structures and hyperparameters tuned for DCMAC in 
each numerical examples are given in Appendix B. In Example 2, to 
shorten the training time and streamline the process of efficiently 
exploring learning rates for actor and critic networks, parallelized 
DCMAC is introduced with periodic synchronization and compared 
to single-processing DCMAC. 

4.1. Example 1: multi-state general system with 15 components 

A 15-component system is represented as a general system, i.e., not 
series- or parallel-system, in Fig. 5. All components are assumed to be 
Type I. The system QoS is defined as the maximum flow capacity MFsys 

between both left and right sides, which is 2.0 when all components 
operate in the AGAN state. As indicated by the hatched blocks in Fig. 5, 
three subsystems of five components are detected based on the Girvan- 
Newman algorithm. By grouping components, the size of the action 
space is shrunk from 215 = 32,768 to 3 × 25 = 96, since the three agents 
only share information about the system state St and select actions aj

t for 
j ∈ [1,3] independently. 

Before comparing the results of the proposed algorithm with those of 
the four baseline policies, we discuss the appropriateness of periodic 
synchronization in the PM-DQN. Table 3 shows the average life-cycle 
costs and 95% confidence intervals of the realization of the policies 
trained on parallel units with and without periodic synchronization in 
the PM-DQN. The mean converges rapidly to the optimal life-cycle cost 
when accompanied by periodic synchronization. The standard deviation 
also decreases significantly, and the coefficient of variation (c.o.v.) is 
less than 1% after the fourth cycle (i.e., 4,000 epochs), at which 
hyperparameter ω is tuned around the optimal value of 4.75. Since the 
step size λ = 0.25 is already small enough, the expected life-cycle cost of 
the policy explored at this time does not have a large difference from the 
optimal life-cycle cost after the 10th cycle. That is, when the step size 
and c.o.v. are sufficiently small (e.g., less than 0.5 and 1%, respectively), 
the algorithm can be terminated early without significant loss in terms of 
performance compared to when it progressed to the end. On the other 
hand, with single-cycle learning, although learning through the same 
number of epochs, the life-cycle cost estimates have a significant vari-
ance, and the mean cost is also higher than that of periodic synchroni-
zation. This inferior performance arises because there is no chance to 
tune the hyperparameter ω and explore good policies in many ways. 
Some outliers inevitably occur during parallel processing, but there are 
no other means for correcting them. Conversely, even if one or two 
learners find a rare near-optimal policy, these policies are not 

Fig. 5. A general system with 15 multi-state components, simplified by 
three subsystems. 

Table 3 
Expected life-cycle costs and 95% confidence intervals of realization of the 
trained policies with and without periodic synchronization in PM-DQN.  

Number of Epochs w/ Periodic Sync w/o Periodic Sync 

1,000 46.04±35.99  
2,000 33.65±3.44  
4,000 29.05±0.48  
6,000 28.71±0.53  
10,000 28.33±0.54 40.99±20.20  
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propagated to most computational resources and are not further 
developed. 

In this example, 5 × 15 = 75 and 50 × 15 = 750 combinations of 
threshold state and time interval sets are explored to optimize CBM and 
TBM, respectively, through five iterations. As a result, the optimal 
threshold state set for CBM and the repair interval set for TBM are 
determined, as shown in Appendix C. In contrast, since MARL methods 
including SOM, PM-DQN, and DCMAC take the state combination of the 

components in a subsystem or a system or centralized costs as input, it is 
difficult to specify the damage state at which agents repair individual 
components. The performances of baselines and the proposed policy are 
estimated through 1,000 demonstrations in terms of the total life-cycle 
costs ctot , and the results are summarized in Table 4 with the time 
required for iterative operation or model training. The TBM policy was 
evaluated as the most ineffective one due to the stochastic environment. 
Although the SOM shares the subsystems and hyperparameters for 
model learning with PM-DQN, each agent learns the subsystem-level 
optimal policy, resulting in higher life-cycle costs than PM-DQN at the 
system level. On the other hand, the optimal policy learned by the PM- 
DQN shows the lowest estimated life-cycle cost, which is almost iden-
tical to those of the optimal policies proposed by CBM and DCMAC. 
Comparing the computational time among them, the advantage of PM- 
DQN in computational efficiency becomes clear. CBM takes 3.5 times 
longer than the computational time of PM-DQN, even though search of 
all combinations is replaced with iterations. Although DCMAC requires 
about 47.5x more learning time than PM-DQN due to the difference in 
the number of processors, it can be shortened through parallelization 

Table 4 
Life-cycle costs and computational time of PM-DQN and four baselines for 
Example 1.  

Method Total life-cycle cost Time (sec) 

CBM 28.42 9,323 
TBM 56.71 99,174 
SOM 35.41 2,523 
DCMAC (single processing) 28.57 125,773 
PM-DQN 28.33 2,647  

Fig. 6. Life-cycle O&M results during an epoch in Example 1: component-level costs (i.e., cM,i and cS,i) and loss of QoS in each subsystem (i.e., cSOM
f ,j = fSD⋅Lj) under (a) 

the SOM policy, and (b) the PM-DQN policy. 
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and the improved convergence speed is compared on the complex sys-
tem in Example 2. 

Fig. 6(a) and (b) show the realization of the O&M process for the 
individual subsystems according to the optimal policies based on SOM 
and PM-DQN, respectively. In these figures showing time histories of 
component-level costs in each subsystem, blue bars indicate mainte-
nance costs cM,i spent on repairs, while red bars, representing shutdown 
costs cS,i, are not marked on the chart because all components are 

repaired before shutdown. Under the SOM policy, each agent immedi-
ately takes the O&M policy to minimize the loss of QoS in individual 
subsystems, thereby repairing subsystems immediately even minor 
damage at the subsystem level as if they were part of a series system as 
shown in Fig. 6(a). In the PM-DQN policy, the agent managing subsys-
tem 3 operates in the same way as in the SOM policy, because subsystem 
3 significantly influences the system QoS. In contrast, the other two 
subsystems connected in parallel are treated even more tolerantly than 
the SOM, since the two act as a detour to each other and the failure of 
either subsystem does not directly lead to the loss of system QoS. This 
difference between these two algorithms is clearly shown in Fig. 7, 
which illustrates the annual average flow capacity loss in individual 
subsystems and the system under all policies. As can be seen from the 
results of all policies, the QoS loss in subsystem 3 plays a dominant role 
in the QoS loss of the system due to its series-connected topology in the 
system. 

Fig. 7. Annual average loss of QoS in individual subsystems or system in Example 1 under each policy.  

Fig. 8. Expected life-cycle costs for learning cycles with and without reallocation in PM-DQN.  

Table 5 
Life-cycle costs and computational time of PM-DQN and four baselines for 
Example 2.  

Method Total life-cycle cost Time (sec) 

CBM 89.95 20,126 
TBM 161.61 214,140 
SOM 88.82 103,456 
DCMAC (parallel processing) 87.13 137,211 
PM-DQN (w/o Reallocation) 86.77 97,437 
PM-DQN (w/ Reallocation) 86.60 101,934  

Fig. 9. Simplified California gas distribution system consisting of subsystems.  
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4.2. Example 2: the simplified California gas distribution system with 48 
gas substations 

Example 2 deals with a more realistic lifeline system, the California 
gas distribution system in Fig. 3. Unlike Example 1, there are two types 
of components in the system; some components located in the west, 
close to the Pacific Ocean, are modeled as type II components with a 
high deterioration rate, while the rest are modeled as Type I. The 
maximum flow capacity MFsys between two terminal nodes is given as 
1.0 when all substations operate in the AGAN state. Through community 
detection shown in Fig. 4(a), the size of the action space is shrunk from 
248 ≅ 2.81 × 1014 to 25 + 6 × 26 + 27 = 544. After resizing the sub-
systems as shown in Fig. 4(b), the largest action space is reduced from 27 

= 128 to 26 = 64.
Before comparing the performance of the proposed algorithm with 

the baselines, we examine the needs for component reallocation dis-
cussed in Section 3.1. Boxplots in Fig. 8 show the expected life-cycle 
costs before and after reallocating the subsystem sizes evenly for 
learning cycles of PM-DQN. Outliers under the worst performing 

hyperparameters are excluded for visualization purposes. Comparing 
the training results up to the third cycle, in which sufficient learning has 
not been achieved yet, the variance of the learning rate of PM-DQN 
without reallocation is significantly larger than that with reallocation. 
This is because the policy search for a relatively large number of state 
and action spaces has not been conducted effectively and sufficiently in 
the largest subsystem 2. While their variances become similar after the 
4th cycle, the former’s estimated life-cycle cost becomes equal to that of 
the latter only after the 10th cycle is completed. As learning continues, 
both expected costs keep decreasing, achieving almost the same life- 
cycle cost. This shows that PM-DQN works well for large systems with 
components that have different degradation processes, although the 
convergence rate becomes lower than before. 

The performances of baselines and MARL-based policies including 
the PM-DQN without reallocation estimated through 1,000 demonstra-
tions are summarized in Table 5. The optimal CBM and TBM policies are 
explored through five iterations as in Example 1. As a result, the 
threshold state set and repair time interval set are respectively deter-
mined, as shown Appendix C. As in Example 1, the TBM policy shows 

Fig. 10. Life-cycle O&M results during an epoch in Example 2: component-level costs (i.e., cM,i and cS,i) and loss of QoS in each subsystem (i.e., cSOM
f ,j = fSD⋅Lj) under 

(a) the SOM policy, and (b) the PM-DQN policy. 
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inferior results due to the stochastic environment, and the life-cycle cost 
of the CBM policy, showing excellent performance in Example 1, is 
higher than those of other MARL-based algorithms. While CBM evalu-
ates the effect of individual components on system QoS at the compo-
nent level and determines the state thresholds for repair, the system QoS 
fundamentally depends on the combination of states of various com-
ponents. This characteristic becomes more prominent as systems get 
more complex, which is confirmed through the performance change of 
CBM compared to MARL-based approaches in Example 1 and Example 2. 
Although the CBM policy ranks with the DCMAC and PM-DQN policies 
in a simple system in Example 1, it faces the limitations in Example 2. 

This also applies to SOM. Although the SOM policy may be an 
optimal decision at each subsystem level, the result of the optimal PM- 
DQN policy in Table 5 shows that the subsystem-level optimal policy 
does not match that at the system level, where the hyperparameter ω is 
eventually tuned to 23.90. Fig. 9 shows a simplified California gas sys-
tem consisting of 9 subsystems, and the realizations of the system O&M 
by SOM and PM-DQN policies are shown in Fig. 10(a) and (b), respec-
tively. To minimize the QoS loss at the subsystem level, SOM manages 
subsystems 3 and 4 conservatively compared to PM-DQN even though 
they are connected in parallel. Accordingly, the loss of QoS in individual 
subsystems is well maintained at a low level in the SOM policy as shown 
in Fig. 10(a). However, because large maintenance cost is required for 
the SOM policy, the life-cycle cost under the policy shows inferior results 
to the PM-DQN and DCMAC policies. 

In contrast, the PM-DQN policy considers the QoS loss of subsystems 
and systems simultaneously. Subsystems except for subsystems 3 and 4 
have no separate bypass. This means that, even if agents maintain sub-
systems 3 and 4 loosely, other subsystems should be managed conser-
vatively as shown in Fig. 10(b). In this way, system simplification based 
on community detection identifies the system topology and provides the 
basis for convergence of each agent’s local optimal policy to the global 
optimal policy. The PM-DQN policy takes advantage of this to manage 
the system, thereby showing the best expected life-cycle costs at the 
system level. 

Fig. 11 shows the training history of DCMAC with and without 
parallel processing. In parallel processing, the optimal learning rates for 
actor and critical networks are explored in the range of [10− 7, 10− 3] and 
[10− 5,10− 3] respectively, gradually converging to the combination of 
learning rates with the lowest life-cycle costs. The best learning rates 
among the explored ones are utilized for single-processing DCMAC as 
well as the parallelized DCMAC. For the first cycle (i.e., the first 5,000 
episodes), there is not much difference between the two results. How-
ever, the gap widens considerably right after the synchronization of 

parallel-trained policies. The difference never diminishes until the end 
of training, and the superior performance resulting from parallelization 
is comparable to PM-DQN; comparing them in terms of performance and 
computation time, PM-DQN is slightly better, but the difference is not 
significant considering the structural difference between the two 
models. This implies that the proposed parallel processing framework 
with periodic synchronization has a dominant effect on performance 
improvement and it can be transferred to other DRL methods. 

5. Summary and conclusions 

This paper proposed an optimal decision-making framework based 
on deep reinforcement learning (DRL), termed parallelized multi-agent 
deep Q-network (PM-DQN), for efficient risk-informed operation and 
management (O&M) scheduling of large civil lifeline systems. Existing 
methods dealt with these system-level O&M scheduling problems by 
limiting the size of the systems or approximating them as component- 
level subproblems due to the exponentially growing state and action 
spaces. However, these types of computational complexity reduction 
may incur a significant loss of accuracy. Moreover, even if the action 
space is relaxed, it is still necessary to find the best policy by exploring 
all policy combinations. To find the optimal policy, the multi-agent 
credit allocation problem should be solved by inferring the contribu-
tions to the centralized cost function. Unstable feedback depending on 
the policy selection of other agents hinders decentralized policy 
learning. In contrast, the proposed algorithm overcame this challenge by 
introducing a divide-and-conquer strategy with community detection 
and parallel processing. Since network clustering is based on the system 
topology, the subsystems identified by the Girvan-Newman clustering 
algorithm can achieve an appropriate balance between accuracy loss 
and computational complexity reduction. The strength of the proposed 
algorithm is further enhanced by reducing the policy exploration time 
and tuning the optimal hyperparameters in combination with parallel 
operation. Multiple processing units derive an optimal policy set under 
hyperparameter tuning and periodic synchronization with the best one. 
The accuracy and efficiency of PM-DQN were demonstrated on a multi- 
state general system with 15 components and the California gas distri-
bution system with 48 components. In each numerical example, the 
optimal PM-DQN policies outperformed baseline alternatives including 
conventional O&M policies and other MARL-based policies in terms of 
computational time as well as the expected life-cycle costs. In particular, 
the California gas distribution system represented as a general system of 
subsystems through community detection shows the system’s topologi-
cal characteristics prominently, indicating the reason for the good 

Fig. 11. Training history of original and parallelized DCMAC with 95% confidence intervals in Example 2.  
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performance of PM-DQN in subsystem level decision-making. 
The proposed PM-DQN trains multiple agents simultaneously by 

defining factorization cost functions based on the causal relationship 
between the flow capacity losses in the whole system and subsystems. 
Because the hyperparameter tuning and the entire process of policy 
exploration are performed independently across multiple processing 
units, the proposed algorithm has high scalability for the ever-evolving 
scale of processing units. In addition, the algorithm features flexible 
handling of the problem, such as adjusting the number of processing 
units according to the complexity of problems and the computing power. 
The parallelization remains scalable and flexible even when other MARL 
algorithms are used. However, there are some other obstacles arising 
from the limitations of MDPs that hinder the modeling and application 
of real lifeline network system O&M; it is difficult to consider the time 
required for actions in the discrete-time domain, and there is a time gap 
between state change and maintenance actions. In addition, if more 
diverse action options, such as minor repairs or reinforcements, are 
given, policy learning at the subsystem level may suffer from the curse of 
dimensionality. Nevertheless, for efficient MARL and parallel process-
ing, the proposed framework of deploying agents and periodically syn-
chronizing multiple processors can be applied to various other DRL 
methods. As shown in Example 2, vanilla DRLs specialized for parallel 
processing are expected to improve exploration and training stability, 
thereby enabling simple but powerful end-to-end learning without 
additional clustering or cost splitting. 

Furthermore, we can extend the proposed method to a partially 
observable MDP (POMDP) environment by considering monitoring er-
rors in grasping system states. The computational cost is higher than that 
in MDP environment because belief function is continuously updated, 
and monitoring action is additionally considered. However, we can 
broaden the scalability of the existing algorithms by taking advantage of 
parallel processing and system simplification based on network 

clustering. Further research is underway to model state changes in the 
continuous-time domain and actions that take different times using 
Semi-Markov decision processes [23]. In addition, the development of 
such a framework is expected to achieve the scalability to cope with 
unexpected events (e.g., earthquakes, typhoons). 
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Appendix A. State-transition matrix 

A1. State-transition matrix of component type I for ‘DN’ 

TI
DN =

⎡

⎢
⎢
⎢
⎢
⎣

0.8 0.2 0 0 0
0 0.8 0.2 0 0
0 0 0.8 0.2 0
0 0 0 0.8 0.2
0 0 0 0 1.0

⎤

⎥
⎥
⎥
⎥
⎦

A2. State-transition matrix of component type II for ‘DN’ 

TII
DN =

⎡

⎢
⎢
⎢
⎢
⎣

0.7 0.3 0 0 0
0 0.7 0.3 0 0
0 0 0.7 0.3 0
0 0 0 0.7 0.3
0 0 0 0 1.0

⎤

⎥
⎥
⎥
⎥
⎦

A3. State-transition matrix for ‘R’ 

TI
R = TII

R =

⎡

⎢
⎢
⎢
⎢
⎣

1.0 0 0 0 0
1.0 0 0 0 0
1.0 0 0 0 0
1.0 0 0 0 0
1.0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

Appendix B. Details of PM-DQN and DCMAC for Examples 1 & 2 

Table B1–B2 
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Appendix C. Optimal threshold states for condition-based maintenance and time intervals for time-based maintenance 
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