
Reliability Engineering and System Safety 239 (2023) 109512

Available online 17 July 2023
0951-8320/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Risk-informed operation and maintenance of complex lifeline systems using
parallelized multi-agent deep Q-network

Dongkyu Lee , Junho Song *

Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea

A R T I C L E I N F O

Keywords:
Deep reinforcement learning
Lifeline systems
Life-cycle cost
Markov decision process
Operation & maintenance
Parallel processing

A B S T R A C T

Lifeline systems such as transportation and water distribution networks may deteriorate with age, raising the risk
of system failure or degradation. Thus, system-level sequential decision-making is essential to address the
problem cost-effectively while minimizing the potential loss. Researchers have proposed to assess the risk of
lifeline systems using Markov decision processes (MDPs) to identify a risk-informed operation and maintenance
(O&M) policy. In complex systems with many components, however, it is potentially intractable to find MDP
solutions because the numbers of states and action spaces increase exponentially. This paper proposes a multi-
agent deep reinforcement learning framework, termed parallelized multi-agent deep Q-network (PM-DQN), to
overcome the curse of dimensionality. The proposed method takes a divide-and-conquer strategy, in which
multiple subsystems are identified by community detection, and each agent learns to achieve the O&M policy of
the corresponding subsystem. The agents establish policies to minimize the decentralized cost of the cluster unit,
including the factorized cost. Such learning processes occur simultaneously in several parallel units, and the
trained policies are periodically synchronized with the best ones, thereby improving the master policy. Nu-
merical examples demonstrate that the proposed method outperforms baseline policies, including conventional
maintenance schemes and the subsystem-level optimal policy.

1. Introduction

Components in civil infrastructure systems, such as bridges, pipes,
and electric wires, deteriorate over the life cycle of the systems due to
corrosion of materials and other environmental factors. Component
failures caused by the degradation may trigger a system-level failure
event, e.g., power outage, service disruption, loss of network connec-
tivity, or degenerate the systems’ the quality of service (QoS) like us-
ability and serviceability [1]. Since civil infrastructure systems,
especially lifeline systems including power, water, or gas transmission
systems, have a great impact on modern societies, not only can each
failure cause huge socio-economic losses, but system-level malfunctions
multiply the damage exponentially. To quantify the risk uncertainty of
these system elements, numerous studies on risk modeling based on
stochastic processes have been conducted [2,3]. Based on these modeled
risk, decision-makers should establish apposite risk-informed operation
and maintenance (O&M) policies considering the inevitable changes in
system-level QoS and the consequences of system failure [2,4].

Various O&M strategies have been developed for structures in civil

lifeline systems. For example, time-based maintenance (TBM) un-
dertakes maintenance based on the predetermined repair time intervals,
i.e., without monitoring or criteria evaluation [5,6]. On the other hand,
condition-based maintenance (CBM) aims to perform preventive main-
tenance based on the information acquired or interpreted in various
forms [6,7,8,9]. Although it is straightforward to scale and apply these
O&M schemes to multiple components, the introduction of exogenous
variables such as the cost of system failure events hampers their direct
extensions to system-level decision-making processes. This is because
component-level optimality does not ensure the optimal decisions at the
system level [10]. Therefore, stakeholders and decision-makers of civil
lifeline systems should be able to establish an O&M policy based on the
system-level performance rather than on the conditions of individual
components during the life cycle.

For O&M policy planning for a system consisting of components
subject to uncertain failures, classical theories of system reliability [11,
12,13] often introduce a Markovian model to handle the characteristics
of the components and the system. If the same system control policy is
applied over the life cycle, stationary conditions are achieved after a

* Corresponding author.
E-mail address: junhosong@snu.ac.kr (J. Song).

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

https://doi.org/10.1016/j.ress.2023.109512
Received 20 July 2022; Received in revised form 5 May 2023; Accepted 16 July 2023

mailto:junhosong@snu.ac.kr
www.sciencedirect.com/science/journal/09518320
https://www.elsevier.com/locate/ress
https://doi.org/10.1016/j.ress.2023.109512
https://doi.org/10.1016/j.ress.2023.109512
https://doi.org/10.1016/j.ress.2023.109512
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2023.109512&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Reliability Engineering and System Safety 239 (2023) 109512

2

warm-up period. Thus, the system availability can be expressed as a
closed-form expression under the assumption that components have
constant mean failure rates [13]. However, such an O&M policy based
on the steady-state assumption is not flexible enough to cope with many
plausible exceptions in practice, e.g., an old road facing its service life.

In efforts to obtain optimal O&M decisions without special as-
sumptions such as steady-state conditions in a finite time horizon, a
Markov decision process (MDP) has been considered as a preferred
framework to formulate the stochastic processes of structural deterio-
ration and the risk-informed O&M optimization. Because of the capa-
bility to quantify the expected cost or value of various maintenance
actions in each state through dynamic programming, MDPs have been
applied to establish the O&M policies for multi-state systems [14,15] as
well as component-level policies [16] for civil infrastructures. Although
MDPs have a fundamental limit in direct applications to large systems
due to the curse of dimensionality, i.e., the state and action spaces in-
crease exponentially with the number of the components, researchers
have proposed relaxing constraints or seeking approximate solutions
[17,18].

In particular, to overcome the challenges, recent studies have applied
many deep reinforcement learning (DRL)-based algorithms [19,20,21,
22] to maintenance optimization problems in civil infrastructure sys-
tems [23,24,25]. More specifically, Yang et al. [26] utilized a deep
Q-learning (DQN) framework for the optimal CBM planning of a
multi-state system, and the framework has been further refined with the
introduction of double DQN (DDQN) [27,28,29]. Moreover, multi-agent
reinforcement learning (MARL) [30,31,32,33], in which multiple agents
learn policies to achieve the minimum costs using DRL, has been
considered to improve the scalability of DRL applications for optimizing
the maintenance of civil systems. For example, Andriotis and Papa-
konstantinou [10,34] have developed centralized or decentralized
MARL-based algorithms, respectively, in terms of sharing or not sharing
parameters related to each agent’s policy for large civil systems. Zhou
et al. [35] also proposed MARL-based hierarchical algorithms to opti-
mize the O&M decisions of large-scale multi-component systems. To
enhance the performance of MARL, Nguyen et al. [36] introduced a
value decomposition network (VDN) algorithm [32,37], decomposing
the centralized Q-value into the sum of decentralized Q-values defined
for individual agents, to find the best O&M decisions. However,
although these MARL algorithms successfully reduce the computational

complexity, model training or hyperparameter tuning still requires
considerable time even in the relaxed environment. In the numerical
examples where the existing MARL methods are applied, the topologies
are quite monotonous, such as series- or parallel-systems, and the
number of components is also limited.

In this paper, we propose a parallelized multi-agent deep Q-network
(PM-DQN), a divide-and-conquer algorithm that utilizes clustering-
based multi-scale approaches [38,39], for risk-informed decision opti-
mization of multi-state flow systems by combining the system simplifi-
cation with MARL based on parallel processing. In PM-DQN, the agents
observe the states of multiple subsystems identified by clustering, and
learn decentralized policies to minimize the factorized cost for sub-
systems. The algorithm guides the decentralized policies chosen by the
agents toward the system-level optimality by repeating the learning
process through parallel processing and tuning a key hyperparameter
based on the results with less computational cost. As a result, the
PM-DQN can efficiently manage large systems that are out of control in
existing approaches.

This paper is organized as follows. Section 2 provides a description of
the problem setting and the model assumptions for numerical examples,
discusses the system-level sequential decision-making optimization
problem, and introduces the DDQN and MARL frameworks. Section 3
proposes the PM-DQN algorithm based on the configuration of sub-
systems based on community detection and the cost factorization. The
efficiency and superior performance of the proposed algorithm are
demonstrated by numerical examples in Section 4, followed by a sum-
mary and concluding remarks in Section 5.

2. Background information

2.1. Problem statement

A finite-time Markov decision process (MDP) shown in Fig. 1 is
defined as a five-tuple (S,A,T,C, γ), the elements of which are described
below.

2.1.1. Descriptions of system state
In this study, we consider a multi-state flow system with n compo-

nents. It is assumed that the initial state of each component is intact, i.e.,
as-good-as-new (AGAN) state. The degradation level of components is
identified as one of the following discretized damage states through
annual observations: AGAN, slight damage, moderate damage, extensive
damage, and collapse. We assume that the system state is observed
without errors. The system degradation state St = [si

t]i∈[1,n] is given as a
vector of component states, where si

t is the state of component i ∈ [1, n] at
time t.

As a performance indicator, the maximum flow capacity between

Fig. 1. Graph of a Markov decision process (MDP) model.

Table 1
Flow capacity of each component for each damage state.

Damage state AGAN Slight Moderate Extensive Collapse

Flow Capacity 1.00 0.95 0.50 0.25 0

D. Lee and J. Song

Reliability Engineering and System Safety 239 (2023) 109512

3

two predetermined terminals is used to quantify the QoS of the system. It
is assumed that the flow capacity of all components depends on each
state as shown in Table 1. Once the flow capacities of all components are
determined, i.e., the system state St is observed, the loss of the system
QoS, Lsys(St), can be calculated as the difference between the current
maximum flow capacity and the maximum flow capacity under the
initial system state through the max-flow algorithm [1,40,41].
Depending on the topology of the system, each component’s flow ca-
pacity loss due to the deterioration has a different effect on the QoS of
the system.

2.1.2. Descriptions of maintenance and degradation process
Based on the system state information, the agent chooses one of the

two options for O&M action ai
t for the component i ∈ [1, n] at time t, i.e.,

‘Do Nothing (DN)’ and ‘Repair it to AGAN state (R).’ System-level action
At = [ai

t]i∈[1,n] is defined as a vector of the actions taken for individual
components. Although the size of the action space seems small at the
component level, the number of system-level actions that a decision-
maker considers each year is 2n, which increases exponentially with
the number of components.

We assume that there is no limit to the number of components that
can be repaired per step. When the decision-maker selects R for one
component, the state becomes the AGAN state deterministically,
otherwise it remains the same or deteriorates with a certain probability
called state-transition probability T. The stochastic degradation process
of individual components is modeled as an independent discrete-time
Markov process. That is, the state-transition probability T(si

t+1
⃒
⃒si

t , ai
t)

for component i ∈ [1, n] depends only on the current state si
t and action

ai
t , due to its Markov properties. While the state-transition probabilities

for R are the same for all components, the state-transition probabilities
for DN are modeled in two ways depending on the component types,
each shown as 5 × 5 matrices in the Appendix A. Once the system-level
action At for all components is determined in system state St , we can
define the system-level state-transition probability T(St+1|St ,At) based
on the state-transition probabilities T(si

t+1
⃒
⃒si

t , ai
t) for all components.

2.1.3. Descriptions of operation and maintenance costs
In the O&M process of civil lifeline systems, various variables (e.g.,

maintenance costs, system QoS, component malfunction) must be
considered simultaneously at each time step. Because of trade-offs be-
tween life-cycle costs and the risk of systems, there is often no single
solution that optimizes all these variables simultaneously. It is necessary
to find an appropriate compromise among the conflicting goals. In multi-
objective optimization, one can explore Pareto-optimal solutions that
cannot improve an objective function without degrading other objective
functions [42]. However, to make a decision among Pareto-optimal
solutions, the subjective preference of decision-makers must intervene
inevitably.

One can handle this issue by transforming multiple objective func-
tions into a single objective function through scalarization, i.e., the
weighted sum formulation. In this approach, the optimal solution
strongly depends on cost functions (or utility functions) used in the
scalarization process. In this paper, the objective function ctot , which is
the total cost at time t, is defined as the sum of the multiple objective
functions scaled to cost as follows:

ctot(St,At) =
∑

i

[
cM,i

(
ai

t

)
+ cS,i

(
si

t

)]
+ cSD(St), (1)

where cM,i is the maintenance cost for the component i; cS,i is the cost due
to the shutdown of the component i; and cSD is the system damage cost
caused by the loss of system QoS. In Eq. (1), cM,i conflicts with the other
operation costs; cS,i and cSD, which depend on the state of components
and system, decrease with a conservative O&M decision, while cM,i

incurred by repairs increases. Therefore, a suitable compromise between

these costs is desirable.
In numerical examples in Section 4, it is assumed that the mainte-

nance cost cM,i of 1.0 is imposed when ai
t is R regardless of si

t , and the
shutdown cost cS,i of 1.0 is charged when component i reached the
collapse state. Loss of the system QoS, Lsys(St), penalizes the system
damage cost cSD by a factor of fSD as

cSD(St) = fSD⋅Lsys(St) = fSD⋅
[
MFsys(S0) − MFsys(St)

]
, (2)

where MFsys(St) is a function representing the maximum flow capacity
between predetermined two terminals under system state St ; and S0 is
the initial system state vector, i.e., every component is in AGAN state.

If the cSD term in Eq. (1) is neglected, i.e., the objective function is
given as a linear function of the component-level costs, the system-level
optimization problem is decomposed into multiple component-level
optimization problems. The optimal solutions to the subproblems pro-
vide the system-level optimum. In most cases, however, cSD given as a
function of component state combinations is of great interest. Therefore,
the objective function ctot cannot be decomposed into component-level
decentralized costs. In other words, the number of combinable policies
to explore for achieving a system-level optimal solution grows expo-
nentially with the system size.

2.2. System-level sequential maintenance optimization

In maintenance optimization problems for civil lifeline system, the
agent’s goal is to determine a policy π(At |St) as a mapping from the state
St to the action At to minimize the Q-value, defined as the expected total
discounted costs to the system’s lifespan TLS as

Qπ(St,At) = Eπ

[
∑TLS

k=t
γk− tctot(Sk,Ak)|St,At

]

, (3)

where γ ∈ [0, 1] is the discount factor to convert future costs into present
values. Just as the component-level optimality does not guarantee the
system-level optimality, a greedy optimal decision at every time step
cannot assure optimality over the long run in a finite-time horizon
environment. This applies to sequential maintenance optimization
problems for civil lifeline system O&M throughout the life cycle. An
O&M policy π is defined to be better than or equal to another O&M
policy π′ if and only if its expected cost is smaller than or equal to that of
π′ for all states [43]. That is, the optimal O&M policy π∗ leads the
Q-value Qπ∗ to its minimum.

In value iteration [43,44], considering this point, the Q-value
Qπ(St ,At) is updated by continuously choosing the action with the
lowest Q-value as

π∗(At|St) =

{
1, if At = argmin

A′
Qπ∗ (St,A′)

0, otherwise.
(4)

After initializing all the Q-value estimates to zero, the values are
updated iteratively according to the following Bellman equation:

Qk+1(St,At) = ctot(St,At) + γ
∑

S′

[

T(S′|St,At)min
A′

Qk(S,A′)

]

, (5)

where Qk(St ,At) is the Q-value on state St and action At estimated at the
kth iteration. The value iteration algorithm works well in simple envi-
ronments but does not apply to environments with large state and action
spaces. In particular, evaluating the Q-value of every combinable state-
action pair in complex environments is nearly impossible.

2.3. Double Deep Q-Network with prioritized experience replay

To overcome the computational limitation, Watkins and Dayan [22]
proposed to apply a model-free reinforcement learning algorithm called

D. Lee and J. Song

Reliability Engineering and System Safety 239 (2023) 109512

4

Q-learning. In the Q-learning algorithm, instead of Eq. (5), the following
equation is used to update Q-values iteratively:

Qk+1(St,At) = Qk(St,At) + α⋅[yt − Qk(St,At)], (6)

where α ∈ (0, 1) is the learning rate; and yt = ctot(St ,At) + γmin
A′

Qk(St+1,

A′) is the target value.
The ε-greedy algorithm is often implemented to expedite the explo-

ration and exploitation process for Q-learning [43]. In detail, after
initializing Q-value to zero, an agent selects a random action (i.e.,
exploration) with probability ε, or the action minimizing Q-value (i.e.,
exploitation) with probability 1 − ε. It is common to start with the value
of ε close to 1 and gradually decrease it as information about the envi-
ronment accumulates.

In a powerful deep reinforcement learning (DRL) framework devel-
oped by Mnih et al. [19,20], a parameterized deep Q-network (DQN) is
introduced to approximate the Q-value. Each layer in the DQN outputs a
linear combination of inputs and parameters. The framework introduces
activation functions between layers, such as rectified linear unit (ReLU),
exponential linear unit (ELU), and scaled ELU (SELU), to describe the
complex relationships beyond linearity. However, DQN tends to un-
derestimate the Q-values in stochastic environments due to the ‘min’
operator in calculating the target value yt . Double DQN (DDQN) [27]
performs the action selection and Q-value evaluation separately using
two different DQNs (i.e., online and target networks), thereby avoiding
the underestimation of the Q-values and stabilizing the learning process.
The target value yt is rewritten as

yt = ctot(St,At) + γQt

(

St+1, argmin
A′

Qo(St+1,A′; θk); θ−
k

)

, (7)

where Qo is the Q-value estimated using the online network with pa-
rameters θk; and Qt is the Q-value estimated using the target network
with parameters θ−k , respectively. The parameters θ−k are periodically
updated to the parameters θk every C steps.

In addition, one can introduce the experience replay [45], in which
agents store the experiences as tuples et = (st , at , rt , st+1) in a replay
buffer D, and update the online network parameters θk based on a batch
of uniformly sampled tuples from the replay buffer. The uniformly
drawn samples significantly reduce the variance of updates owing to the
weakened correlation, thereby suppressing the oscillation or divergence
of the parameters θk+1 during the training process. Combining these
techniques, DDQN calculates the loss function L(θk) and updates the
online network parameters θk+1 to minimize L(θk) by the gradient
descent as follows:

L(θk) = Eet∼U(D)

[
(yt − Qo(St,At; θk))

2]
, (8)

θk+1 = θk −
1
2

α∇θk L(θk)

= θk + αEet∼U(D)

[
(yt − Qo(St,At; θk))∇θk Qo(St,At; θk)

]
, (9)

where U(D) represents a uniform distribution over the replay buffer D;
and et is a batch of the tuples sampled from U(D).

Agents can gauge the importance of each experience by the temporal
difference error (TD-error), i.e., the difference between the expected Q-
values before and after the experience. In prioritized experience replay
(PER) [46], the alternative sampling density h(⋅) of a batch of experience
tuples et = (st , at , rt , st+1), which was uniformly distributed, is given as:

h(et;α) =
|δt|

α
∑

t|δt|
α, (10)

where δt = yt − Qo(St ,At ; θk) is the TD-error; and α ≥ 0 is an importance
sampling hyperparameter, with α = 0 corresponding to the existing
experience replay. The loss function L(θk) in Eq. (8) can be calculated
more efficiently using importance sampling as follows:

L(θk) = Eet∼U(D)

[
δ2

t

]
= Eet∼h

[

δ2
t ⋅

fU(et)

h(et;α)

]

= Eet∼h
[
δ2

t ⋅W(et; α)
]
, (11)

where fU(⋅) denotes the probability mass function of the discrete uniform
distribution; and W(et ; α) = fU(et)/h(et ; α) is the likelihood ratio to
compensate for the bias caused by introducing the alternative sampling
density h(et ;α). The initial learning process is highly non-stationary
because the online and target networks have not been trained enough.
Therefore, even if the estimate is slightly biased, stabilization should be
the top priority at the beginning phase of learning, and importance
sampling correction may be considered later. To this end, W(et ; α) in Eq.
(11) is replaced by W̃(et ;α,β), defined as

W̃(et; α, β) =
(

fU(et)

h(et; α)

)β

= (N⋅h(et;α))− β
, (12)

where N is the number of experiences in the replay buffer D; and β ∈

[0, 1] is a hyperparameter controlling how much to compensate for the
bias. As β is gradually annealed toward 1.0, starting from a low value (e.
g., typically around 0.4 to 0.6), the bias is completely compensated.
When combined, DDQN and PER exert a substantial synergistic effect,
thereby neutralizing a significant portion of the existing limitations of Q-
learning algorithms.

2.4. Factorization in multi-agent reinforcement learning

In addition to increasing the efficiency of DRL like DDQN with PER,
dividing the original problem into multiple subproblems can be a more
effective solution to overcome the curse of dimensionality caused by the
exponentially increasing number of states and actions. A divide-and-
conquer strategy called a multi-agent reinforcement learning (MARL)
deploys multiple agents in each segmented state and action spaces, and
the agents learn policies to achieve the minimum costs independently or
through cooperation.

If there are no cost functions that agents jointly contribute, a given
environment can be simplified by decomposing it into several smaller
independent environments [30,47]. In other words, the optimal decision
set in sub-problems yields the same solution as the optimal global
decision-making. Then, the size of the action space is shrunk from
∏m

j=1

⃒
⃒Aj⃒⃒ to

∑m
j=1

⃒
⃒Aj

⃒
⃒, where m is the number of agents, and |Aj| is rede-

fined as the number of available actions for the jth agent. As a result, one
can handle environments with large spaces of states and actions based
on the large scalability.

However, in most of complex environments, cost functions take a
combination of various states and actions as input, e.g., Eq. (1). This
leads to the multi-agent credit allocation problem [33], in which the
contributions of individual agents to the cost function must be accu-
rately inferred. To this end, the problem can be segmented into multiple
independent environments by factorizing the centralized cost into the
sum of decentralized costs through neural networks called value
decomposition networks (VDNs) [32] or user-defined functions. No
matter how sophisticated the original cost is segmented, accuracy loss is
inevitable during the factorization process, thereby resulting in a
trade-off between accuracy and scalability.

3. Proposed algorithm: parallelized multi-agent deep Q-network
(PM-DQN)

The MARL method combined with DDQN and PER improves the
scalability with minimal loss of accuracy, allowing the MDP framework
to be applied to complex environments. However, as the number of
components in the system increases, the accuracy loss of the MARL
method gradually accumulates, eventually leading to a failure in
optimal policy search. To alleviate the scalability issue, in this section,

D. Lee and J. Song

Reliability Engineering and System Safety 239 (2023) 109512

5

we propose a novel MARL algorithm termed “Parallelized Multi-agent
Deep Q-Network” (PM-DQN), which assigns multiple agents to sub-
systems based on community detection, and makes the agents explore
decentralized cost-minimizing policies under various hyperparameter
values in multiple processing units. The proposed algorithm consists of
three steps differentiated from others as follows: (1) system simplifica-
tion based on network clustering for effective agent allocation, (2)
factorization of centralized costs based on a predefined function, and (3)
the hyperparameter tuning with parallel processing. Fig. 2(a) and (b)
respectively illustrate the proposed algorithm’s microscopic and
macroscopic structures of operations.

3.1. Step 1: identification of subsystems based on community detection

In optimizing MARL-based O&M strategies in large-scale systems, it
is necessary to find an appropriate balance between minimizing accu-
racy loss and efficient reduction of the state and action spaces. To this
end, we propose a decomposition of the system into a few subsystems, i.
e., communities of components. By grouping deeply related components
in terms of functionality or densely connected components into one
subsystem, the existing system can be simplified into another system of
subsystems. This can also lower computational complexity that may
scale exponentially with the number of components, while minimizing

loss of information. Various algorithms such as spectral clustering al-
gorithms [38,48] and Markov clustering algorithm [49,50] have been
proposed for community detection. In this paper, the target system is
represented by m subsystems instead of the existing n components based
on the Girvan-Newman algorithm [39,51].

The Girvan-Newman algorithm sequentially removes edges with the
highest edge-betweenness, which means the probability that the shortest
paths between all node pairs in the graph go through the edge [52]. As
edges with high edge-betweenness are removed, the entire graph rep-
resenting the system is divided into several isolated clusters, and the
process of edge removal ends when all edges are removed. In
Girvan-Newman algorithm, the modularity M is introduced to stop the
process at an appropriate time [51]. The modularity represents the
difference between the actual number of intra-cluster edges in the
existing graph and the expected number of intra-cluster edges when
reconstructing the graph while preserving the degree of each node, and
is defined as

M =
∑

c∈[1,nc]

[
Lc

ne
−

(
kc

2ne

)2
]

, (13)

where nc is the number of isolated clusters; ne is the number of edges in
the graph; Lc is the number of intra-cluster edges in cluster c; and kc is

Fig. 2. (a) Learning process using DDQN with PER in a processing unit, and (b) overall procedure of Parallelized Multi-agent Deep Q-Network (PM-DQN) algorithm.

D. Lee and J. Song

Reliability Engineering and System Safety 239 (2023) 109512

6

the sum of degrees of the nodes in cluster c. Modularity is updated
whenever an edge is removed, and when it is maximized, one can
identify subsystems that are separated from each other.

Once m subsystems in the target system are identified using the
Girvan-Newman algorithm, we can assign an agent to learn the O&M
strategy of each subsystem. However, there is a problem in utilizing the
community detection result for PM-DQN; since all agents must be

trained for optimal decision-making for the system-level optimal policy,
the convergence of PM-DQN is governed by the slowest learning rate
among agents (generally the agent with the largest state and action
spaces). If components are concentrated in specific clusters, the learning
time of the agents increases exponentially, thereby leading to a decrease
in learning efficiency of PM-DQN. Therefore, a procedure for adjusting
the subsystems to an even size is necessary. To this end, after initial
grouping based on the Girvan-Newman algorithm, some components in
the largest subsystem are reallocated to other neighboring subsystems.
In this process, the number of edges connecting subsystems should be
minimized to prevent loss of calculation accuracy due to system
simplification.

Fig. 3 shows a simplified California gas distribution system (modified
from [53]) with 48 gas substations of two types and 60 bidirectional
pipelines. It is assumed that the pipelines are intact during the lifetime of
the system, and only the deterioration of the gas substations, whose
states can be periodically identified, is considered. The system can be
described by a graph model with 48 nodes and 60 edges. Table 2 shows
how modularity and the number of detected clusters change with edge
removal by the Girvan-Newman algorithm. As the edges are removed
continuously, the number of clusters increases, but the modularity peaks
at 8 clusters. However, the detected clusters consist of five to seven
components as shown in Fig. 4(a), resulting in differences in the action
space of the agents. Since the learning rate of the agent managing the
largest subsystem is lower than that of the other agents, the benefits of
parallel processing in simultaneous training of all agents can be
underutilized. To compensate for this limitation, one component is
reallocated from the largest subsystem to the neighboring smallest
subsystem 3 as shown in Fig. 4(b), making the number of components
within subsystems as uniform as possible. In contrast to the previous
subsystems in Fig. 4(a), all subsystems in Fig. 4(b) consist of the same
number of components, so the learning rate of the agent is expected to be
similar. The needs for this procedure are discussed through numerical

Fig. 3. California gas distribution system with 48 multi-state gas substations.

Table 2
Modularity and number of clusters according to edge elimination.

No. of eliminated edge 0 1 3 7 11 13 15 18

Modularity 0 0.443 0.565 0.685 0.689 0.673 0.647 0.608
No. of clusters 1 2 4 6 8 10 12 14

Fig. 4. (a) Subsystems detected by Girvan-Newman algorithm, and (b) subsystems with uniformly reallocated components.

D. Lee and J. Song

Reliability Engineering and System Safety 239 (2023) 109512

7

examples in Section 4 by comparing the learning efficiency with or
without the reallocation.

3.2. Step 2: factorization of centralized costs

After assigning one agent to each subsystem detected in Step 1,
multiple agents make O&M decisions by comprehensively considering
the state of components within each subsystem. To carry out the deci-
sion making independently but efficiently for all subsystems, the total
cost ctot should be factorized into individual subsystems based on
effective multi-agent credit allocation. For example, the total cost ctot in
Eq. (1) is divided into two parts: decentralized costs (e.g., cM,i and cS,i)

and centralized costs (e.g., cSD). Since decentralized costs obviously arise
from each component, it makes sense to impose the sum of decentralized
costs of the components in a subsystem to the corresponding agent.
However, allocating the centralized cost to individual agents requires
the introduction of VDN or predefined functions. To this end, PM-DQN
finds the subsystems that are presumed to cause the loss of system,
and selectively allocates centralized costs to those subsystems based on a
predefined function. More specifically, by splitting the centralized cost
and summing up the decentralized costs, the total decentralized cost csubj

for subsystem j, subj, is expressed as

csubj

(
St, aj

t

)
=

∑

i∈subj

[
cM,i

(
aj

t

)
+ cS,i

(
si

t

)]
+ ωcf ,j(St), (14)

where aj
t is redefined as the action chosen by agent j at time t; cf ,j is the

factorized cost transferred from the centralized cost cSD to subsystem j;
and ω is the hyperparameter that determines the weight of the factorized
cost. The factorized cost cf ,j is predefined as follows:

cf ,j(St) = fSD⋅min
[
Lsys(St),Lj

(
Sj

t

)]
, (15)

where Lj(⋅) is the QoS loss in the jth subsystem; and Sj
t is a subset of St ,

which is the state vector of components belonging to the jth subsystem.
While Lsys is calculated based on the maximum flow capacity between
two predetermined terminals, Lj is defined as the difference between the
total inflow and outflow of the jth subsystem. The structure of Eq. (15) is
similar to that of Eq. (2) before factorization, but individual agents infer
the causality between QoS losses of system and their subsystems using
the min operator.

Using Eqs. (6), (7), (14), and (15), one can calculate individual Q-
values Qj(St , aj

t) for each agent j. In this paper, we utilize the DDQN
combined with PER (introduced in Section 2.3) for more efficient and
stable Q-learning. More specifically, the online network with parameters
θj and the target network with parameters θ−j for j ∈ [1,m] take the
system state vector St and the current time step t as inputs, and
respectively output the Q-values Qj

o and Qj
t according to each action in

the form of vectors. Then, the optimal action based on the estimated Qj
o

is converted into an |Aj|-dimensional one-hot encoding vector, which is
multiplied with the vector form of Qj

t to update the online Q-value.
Unlike these online parameters θj that are updated every step, the target
network parameters θ−j are periodically updated to the online parame-
ters θj every C steps. It should be noted that, unlike VDN, the expected
total life-cycle cost of the system Qsys is not equal to the sum of those
caused by the factorized costs cf ,j [37]. As all agents choose the actions
that minimize their respective Qj, the system-level action set At is
redefined as

At =

[

argmin
a

Qj(St, a)
]

j∈[1,m]

. (16)

In the learning process of DDQN, the performance of the PM-DQN
depends significantly on the hyperparameterω in Eq. (14). Therefore,
the hyperparameter value should be appropriately determined
depending on the environment (e.g., system topologies, O&M costs,
discount factor γ). In addition, there is no way to find the optimal value
analytically, while heuristics require substantial computational costs for
j ∈ [1,m].

3.3. Step 3: parallel processing-based hyperparameter tuning

For effective hyperparameter tuning, we introduce parallel process-
ing in the proposed algorithm. Processing units (e.g., CPUs or GPUs) are
classified into five groups with different hyperparameter values. In each
unit, agents explore the optimal decentralized policies using the
ε-greedy algorithm simultaneously under each given hyperparameter ω,

as illustrated in Fig. 2(a). After training agents for a sufficiently large
number of epochs, called a cycle, one can judge the superiority of pol-
icies based on hyperparameter values through the expected total life-
cycle costs Qsys. Prior to the next cycle, the parameters of the online
and target networks in all processing units, θj and θ−j for j ∈ [1,m], are
synchronized with those showing the best performance in the previous
cycle, as shown in Fig. 2(b), thereby contributing to improving the
master policy. Through the synchronization process, some rarely
explored near-optimal policies can be propagated to other processing
units, resulting in significant performance gains. Then, hyperparameter
ω is tuned as follows:

ω←argminω[Qsys] + kλ, (17)

where λ is an exponentially decaying step size; and k ∈ [− 2, 2]. In
addition, when the expected life-cycle cost has sufficiently converged
through comparison of results of the parallel processing, the algorithm is
terminated early. Algorithm 1 provides a pseudo-code of the proposed

Algorithm 1
Parallelized Multi-agent Deep Q-Network (PM-DQN).

Identify m subsystems through community detection and assign an agent to each
subsystem

Initialize replay buffer Dj for j ∈ [1,m]

Initialize the online network Qj
o with random parameters θj for j ∈ [1,m]

Initialize the target network Qj
t with random parameters θ−j = θj for j ∈ [1,m]

Initialize hyperparameters ω
for cycle = 1 to ncyc do

for processing unit = 1 to npu do
for epoch = 1 to nepoch do

Initialize state St = [Sj
t]j∈[1,n] where Sj

t = [si
t]i∈clj

for t = 1 to TH do
for j = 1 to m do

Select action aj
t =

⎧
⎨

⎩

a random action, ε
argminaQj

o(S
j
t , a; θj), otherwise

Observe Sj
t+1 , ccomp,i for i ∈ subj

end
Observe system damage cost cSD

for j = 1 to m do
Calculate the factorized cost for subsystem j, csubj

Store experience ej
t = (Sj

t , a
j
t , csubj , Sj

t+1) in Dj with TD-error δj
t

Sample minibatch of experiences ej
k with probability |δj

k|
α
/
∑

t
|δj

k|
α

from Dj

Compute importance-sampling weight wj
k = (N⋅P(ej

k))
− β

Compute target value yj
k = csubj + γQj

t

(

Sj
k+1,argmin

a∈A
Qj

o(Sj
k,a; θj); θ−j

)

Update δj
k←yj

k − Qj
o(Sj

k,a
j
k; θj)

Perform gradient descent on (δj
k)

2
w.r.t. θj

Update θ−j ←θj every C steps
end

end
end

end
Synchronize the network parameters
Tune hyperparameters ω←argminω[Qsys] + k⋅λ for k ∈ [− 2,2]

end

D. Lee and J. Song

Reliability Engineering and System Safety 239 (2023) 109512

8

PM-DQN algorithm.

4. Numerical examples

To demonstrate the proposed PM-DQN, we consider two numerical
examples inspired by Andriotis & Papakonstantinou [10] and Stern et al.
[53]: (1) a multi-state lifeline network system with 15 components and
(2) the simplified California gas distribution system abovementioned.
The life-cycle span of each system TLS is set to 50 steps (i.e., 50 years)
with a discount factor of γ = 0.95. The coefficient fSD in Eqs. (2) and
(15) for the system damage cost cSD is set to 5.0 in both examples.

To build and implement our own custom environments, we use
OpenAI Gym [54], a toolkit for reinforcement learning research. All
experiments are performed using the Keras deep learning Python library
[55] with Tensorflow backend [56] on a server with 2 Intel(R) Xeon(R)
CPU Gold 6240R CPUs at 2.40 GHz and 256GB RAM. The online and
target networks consist of three fully connected hidden layers, each with
SELU activation functions per example. For stochastic gradient descent
on the network parameter space, we use the Nesterov-accelerated
Adaptive Moment Estimation (Nadam) optimizer [57], combining the
Adaptive Movement Estimation (Adam) with Nesterov momentum [58].
DDQNs explore and exploit complex environments using the ε-greedy
algorithm mentioned in Section 2.3, where the exploration probability ε
decreases from 0.5 to 0 for every cycle along with the cosine function
[59]. For model training based on parallel processing on multiple pro-
cessors, the multiprocessing library [60] is implemented. Appendix B
provides more detailed information about hyperparameters for
PM-DQN.

Since it is intractable to obtain the optimal policy for these examples
due to the curse of dimensionality, two conventional O&M schemes and
two MARL methods are also implemented as baseline policies as follows
to confirm the superior performance of the PM-DQN:

• Condition-based maintenance (CBM): agents repair components that
have deteriorated below optimized threshold states. Since the num-
ber of all combinable threshold cases is exponentially proportional to
the number of components n, it is extremely time-consuming to
evaluate the system life-time cost for all policies. In numerical

examples, the optimal threshold state set is explored through itera-
tions that sequentially update the optimal threshold state of each
component that minimizes the system life-cycle cost. The number of
threshold combinations per iteration scales linearly with the number
of components.

• Time-based maintenance (TBM): agents periodically repair individ-
ual components, regardless of their state, at certain time intervals
optimized for each component. To find the optimal repair intervals,
we use iterations in the same form as CBM’s policy exploration.

• Subsystem-level optimal maintenance (SOM): agents assigned to
subsystems independently learn policies to minimize the cost of each
subsystem in Eq. (14), where the factorized centralized cost cf ,j(St)

depends only on the QoS loss in the jth subsystem, cSOM
f ,j (Sj

t) = fSD⋅

Lj(Sj
t), instead of Eq. (15). Other than the factorized cost, the iden-

tified subsystems to which agents are assigned and the hyper-
parameters in Appendix B are shared with PM-DQN.

• Deep Centralized Multi-agent Actor Critic (DCMAC) [10]: agents
learn policies based on two separate neural networks, called
actor-critic methods, each approximating a centralized policy func-
tion and the expected total life-cycle costs. Actions on individual
components are learned conditionally independent of each other.
The details of structures and hyperparameters tuned for DCMAC in
each numerical examples are given in Appendix B. In Example 2, to
shorten the training time and streamline the process of efficiently
exploring learning rates for actor and critic networks, parallelized
DCMAC is introduced with periodic synchronization and compared
to single-processing DCMAC.

4.1. Example 1: multi-state general system with 15 components

A 15-component system is represented as a general system, i.e., not
series- or parallel-system, in Fig. 5. All components are assumed to be
Type I. The system QoS is defined as the maximum flow capacity MFsys

between both left and right sides, which is 2.0 when all components
operate in the AGAN state. As indicated by the hatched blocks in Fig. 5,
three subsystems of five components are detected based on the Girvan-
Newman algorithm. By grouping components, the size of the action
space is shrunk from 215 = 32,768 to 3 × 25 = 96, since the three agents
only share information about the system state St and select actions aj

t for
j ∈ [1,3] independently.

Before comparing the results of the proposed algorithm with those of
the four baseline policies, we discuss the appropriateness of periodic
synchronization in the PM-DQN. Table 3 shows the average life-cycle
costs and 95% confidence intervals of the realization of the policies
trained on parallel units with and without periodic synchronization in
the PM-DQN. The mean converges rapidly to the optimal life-cycle cost
when accompanied by periodic synchronization. The standard deviation
also decreases significantly, and the coefficient of variation (c.o.v.) is
less than 1% after the fourth cycle (i.e., 4,000 epochs), at which
hyperparameter ω is tuned around the optimal value of 4.75. Since the
step size λ = 0.25 is already small enough, the expected life-cycle cost of
the policy explored at this time does not have a large difference from the
optimal life-cycle cost after the 10th cycle. That is, when the step size
and c.o.v. are sufficiently small (e.g., less than 0.5 and 1%, respectively),
the algorithm can be terminated early without significant loss in terms of
performance compared to when it progressed to the end. On the other
hand, with single-cycle learning, although learning through the same
number of epochs, the life-cycle cost estimates have a significant vari-
ance, and the mean cost is also higher than that of periodic synchroni-
zation. This inferior performance arises because there is no chance to
tune the hyperparameter ω and explore good policies in many ways.
Some outliers inevitably occur during parallel processing, but there are
no other means for correcting them. Conversely, even if one or two
learners find a rare near-optimal policy, these policies are not

Fig. 5. A general system with 15 multi-state components, simplified by
three subsystems.

Table 3
Expected life-cycle costs and 95% confidence intervals of realization of the
trained policies with and without periodic synchronization in PM-DQN.

Number of Epochs w/ Periodic Sync w/o Periodic Sync

1,000 46.04±35.99
2,000 33.65±3.44
4,000 29.05±0.48
6,000 28.71±0.53
10,000 28.33±0.54 40.99±20.20

D. Lee and J. Song

Reliability Engineering and System Safety 239 (2023) 109512

9

propagated to most computational resources and are not further
developed.

In this example, 5 × 15 = 75 and 50 × 15 = 750 combinations of
threshold state and time interval sets are explored to optimize CBM and
TBM, respectively, through five iterations. As a result, the optimal
threshold state set for CBM and the repair interval set for TBM are
determined, as shown in Appendix C. In contrast, since MARL methods
including SOM, PM-DQN, and DCMAC take the state combination of the

components in a subsystem or a system or centralized costs as input, it is
difficult to specify the damage state at which agents repair individual
components. The performances of baselines and the proposed policy are
estimated through 1,000 demonstrations in terms of the total life-cycle
costs ctot , and the results are summarized in Table 4 with the time
required for iterative operation or model training. The TBM policy was
evaluated as the most ineffective one due to the stochastic environment.
Although the SOM shares the subsystems and hyperparameters for
model learning with PM-DQN, each agent learns the subsystem-level
optimal policy, resulting in higher life-cycle costs than PM-DQN at the
system level. On the other hand, the optimal policy learned by the PM-
DQN shows the lowest estimated life-cycle cost, which is almost iden-
tical to those of the optimal policies proposed by CBM and DCMAC.
Comparing the computational time among them, the advantage of PM-
DQN in computational efficiency becomes clear. CBM takes 3.5 times
longer than the computational time of PM-DQN, even though search of
all combinations is replaced with iterations. Although DCMAC requires
about 47.5x more learning time than PM-DQN due to the difference in
the number of processors, it can be shortened through parallelization

Table 4
Life-cycle costs and computational time of PM-DQN and four baselines for
Example 1.

Method Total life-cycle cost Time (sec)

CBM 28.42 9,323
TBM 56.71 99,174
SOM 35.41 2,523
DCMAC (single processing) 28.57 125,773
PM-DQN 28.33 2,647

Fig. 6. Life-cycle O&M results during an epoch in Example 1: component-level costs (i.e., cM,i and cS,i) and loss of QoS in each subsystem (i.e., cSOM
f ,j = fSD⋅Lj) under (a)

the SOM policy, and (b) the PM-DQN policy.

D. Lee and J. Song

Reliability Engineering and System Safety 239 (2023) 109512

10

and the improved convergence speed is compared on the complex sys-
tem in Example 2.

Fig. 6(a) and (b) show the realization of the O&M process for the
individual subsystems according to the optimal policies based on SOM
and PM-DQN, respectively. In these figures showing time histories of
component-level costs in each subsystem, blue bars indicate mainte-
nance costs cM,i spent on repairs, while red bars, representing shutdown
costs cS,i, are not marked on the chart because all components are

repaired before shutdown. Under the SOM policy, each agent immedi-
ately takes the O&M policy to minimize the loss of QoS in individual
subsystems, thereby repairing subsystems immediately even minor
damage at the subsystem level as if they were part of a series system as
shown in Fig. 6(a). In the PM-DQN policy, the agent managing subsys-
tem 3 operates in the same way as in the SOM policy, because subsystem
3 significantly influences the system QoS. In contrast, the other two
subsystems connected in parallel are treated even more tolerantly than
the SOM, since the two act as a detour to each other and the failure of
either subsystem does not directly lead to the loss of system QoS. This
difference between these two algorithms is clearly shown in Fig. 7,
which illustrates the annual average flow capacity loss in individual
subsystems and the system under all policies. As can be seen from the
results of all policies, the QoS loss in subsystem 3 plays a dominant role
in the QoS loss of the system due to its series-connected topology in the
system.

Fig. 7. Annual average loss of QoS in individual subsystems or system in Example 1 under each policy.

Fig. 8. Expected life-cycle costs for learning cycles with and without reallocation in PM-DQN.

Table 5
Life-cycle costs and computational time of PM-DQN and four baselines for
Example 2.

Method Total life-cycle cost Time (sec)

CBM 89.95 20,126
TBM 161.61 214,140
SOM 88.82 103,456
DCMAC (parallel processing) 87.13 137,211
PM-DQN (w/o Reallocation) 86.77 97,437
PM-DQN (w/ Reallocation) 86.60 101,934

Fig. 9. Simplified California gas distribution system consisting of subsystems.

D. Lee and J. Song

Reliability Engineering and System Safety 239 (2023) 109512

11

4.2. Example 2: the simplified California gas distribution system with 48
gas substations

Example 2 deals with a more realistic lifeline system, the California
gas distribution system in Fig. 3. Unlike Example 1, there are two types
of components in the system; some components located in the west,
close to the Pacific Ocean, are modeled as type II components with a
high deterioration rate, while the rest are modeled as Type I. The
maximum flow capacity MFsys between two terminal nodes is given as
1.0 when all substations operate in the AGAN state. Through community
detection shown in Fig. 4(a), the size of the action space is shrunk from
248 ≅ 2.81 × 1014 to 25 + 6 × 26 + 27 = 544. After resizing the sub-
systems as shown in Fig. 4(b), the largest action space is reduced from 27

= 128 to 26 = 64.
Before comparing the performance of the proposed algorithm with

the baselines, we examine the needs for component reallocation dis-
cussed in Section 3.1. Boxplots in Fig. 8 show the expected life-cycle
costs before and after reallocating the subsystem sizes evenly for
learning cycles of PM-DQN. Outliers under the worst performing

hyperparameters are excluded for visualization purposes. Comparing
the training results up to the third cycle, in which sufficient learning has
not been achieved yet, the variance of the learning rate of PM-DQN
without reallocation is significantly larger than that with reallocation.
This is because the policy search for a relatively large number of state
and action spaces has not been conducted effectively and sufficiently in
the largest subsystem 2. While their variances become similar after the
4th cycle, the former’s estimated life-cycle cost becomes equal to that of
the latter only after the 10th cycle is completed. As learning continues,
both expected costs keep decreasing, achieving almost the same life-
cycle cost. This shows that PM-DQN works well for large systems with
components that have different degradation processes, although the
convergence rate becomes lower than before.

The performances of baselines and MARL-based policies including
the PM-DQN without reallocation estimated through 1,000 demonstra-
tions are summarized in Table 5. The optimal CBM and TBM policies are
explored through five iterations as in Example 1. As a result, the
threshold state set and repair time interval set are respectively deter-
mined, as shown Appendix C. As in Example 1, the TBM policy shows

Fig. 10. Life-cycle O&M results during an epoch in Example 2: component-level costs (i.e., cM,i and cS,i) and loss of QoS in each subsystem (i.e., cSOM
f ,j = fSD⋅Lj) under

(a) the SOM policy, and (b) the PM-DQN policy.

D. Lee and J. Song

Reliability Engineering and System Safety 239 (2023) 109512

12

inferior results due to the stochastic environment, and the life-cycle cost
of the CBM policy, showing excellent performance in Example 1, is
higher than those of other MARL-based algorithms. While CBM evalu-
ates the effect of individual components on system QoS at the compo-
nent level and determines the state thresholds for repair, the system QoS
fundamentally depends on the combination of states of various com-
ponents. This characteristic becomes more prominent as systems get
more complex, which is confirmed through the performance change of
CBM compared to MARL-based approaches in Example 1 and Example 2.
Although the CBM policy ranks with the DCMAC and PM-DQN policies
in a simple system in Example 1, it faces the limitations in Example 2.

This also applies to SOM. Although the SOM policy may be an
optimal decision at each subsystem level, the result of the optimal PM-
DQN policy in Table 5 shows that the subsystem-level optimal policy
does not match that at the system level, where the hyperparameter ω is
eventually tuned to 23.90. Fig. 9 shows a simplified California gas sys-
tem consisting of 9 subsystems, and the realizations of the system O&M
by SOM and PM-DQN policies are shown in Fig. 10(a) and (b), respec-
tively. To minimize the QoS loss at the subsystem level, SOM manages
subsystems 3 and 4 conservatively compared to PM-DQN even though
they are connected in parallel. Accordingly, the loss of QoS in individual
subsystems is well maintained at a low level in the SOM policy as shown
in Fig. 10(a). However, because large maintenance cost is required for
the SOM policy, the life-cycle cost under the policy shows inferior results
to the PM-DQN and DCMAC policies.

In contrast, the PM-DQN policy considers the QoS loss of subsystems
and systems simultaneously. Subsystems except for subsystems 3 and 4
have no separate bypass. This means that, even if agents maintain sub-
systems 3 and 4 loosely, other subsystems should be managed conser-
vatively as shown in Fig. 10(b). In this way, system simplification based
on community detection identifies the system topology and provides the
basis for convergence of each agent’s local optimal policy to the global
optimal policy. The PM-DQN policy takes advantage of this to manage
the system, thereby showing the best expected life-cycle costs at the
system level.

Fig. 11 shows the training history of DCMAC with and without
parallel processing. In parallel processing, the optimal learning rates for
actor and critical networks are explored in the range of [10− 7, 10− 3] and
[10− 5,10− 3] respectively, gradually converging to the combination of
learning rates with the lowest life-cycle costs. The best learning rates
among the explored ones are utilized for single-processing DCMAC as
well as the parallelized DCMAC. For the first cycle (i.e., the first 5,000
episodes), there is not much difference between the two results. How-
ever, the gap widens considerably right after the synchronization of

parallel-trained policies. The difference never diminishes until the end
of training, and the superior performance resulting from parallelization
is comparable to PM-DQN; comparing them in terms of performance and
computation time, PM-DQN is slightly better, but the difference is not
significant considering the structural difference between the two
models. This implies that the proposed parallel processing framework
with periodic synchronization has a dominant effect on performance
improvement and it can be transferred to other DRL methods.

5. Summary and conclusions

This paper proposed an optimal decision-making framework based
on deep reinforcement learning (DRL), termed parallelized multi-agent
deep Q-network (PM-DQN), for efficient risk-informed operation and
management (O&M) scheduling of large civil lifeline systems. Existing
methods dealt with these system-level O&M scheduling problems by
limiting the size of the systems or approximating them as component-
level subproblems due to the exponentially growing state and action
spaces. However, these types of computational complexity reduction
may incur a significant loss of accuracy. Moreover, even if the action
space is relaxed, it is still necessary to find the best policy by exploring
all policy combinations. To find the optimal policy, the multi-agent
credit allocation problem should be solved by inferring the contribu-
tions to the centralized cost function. Unstable feedback depending on
the policy selection of other agents hinders decentralized policy
learning. In contrast, the proposed algorithm overcame this challenge by
introducing a divide-and-conquer strategy with community detection
and parallel processing. Since network clustering is based on the system
topology, the subsystems identified by the Girvan-Newman clustering
algorithm can achieve an appropriate balance between accuracy loss
and computational complexity reduction. The strength of the proposed
algorithm is further enhanced by reducing the policy exploration time
and tuning the optimal hyperparameters in combination with parallel
operation. Multiple processing units derive an optimal policy set under
hyperparameter tuning and periodic synchronization with the best one.
The accuracy and efficiency of PM-DQN were demonstrated on a multi-
state general system with 15 components and the California gas distri-
bution system with 48 components. In each numerical example, the
optimal PM-DQN policies outperformed baseline alternatives including
conventional O&M policies and other MARL-based policies in terms of
computational time as well as the expected life-cycle costs. In particular,
the California gas distribution system represented as a general system of
subsystems through community detection shows the system’s topologi-
cal characteristics prominently, indicating the reason for the good

Fig. 11. Training history of original and parallelized DCMAC with 95% confidence intervals in Example 2.

D. Lee and J. Song

Reliability Engineering and System Safety 239 (2023) 109512

13

performance of PM-DQN in subsystem level decision-making.
The proposed PM-DQN trains multiple agents simultaneously by

defining factorization cost functions based on the causal relationship
between the flow capacity losses in the whole system and subsystems.
Because the hyperparameter tuning and the entire process of policy
exploration are performed independently across multiple processing
units, the proposed algorithm has high scalability for the ever-evolving
scale of processing units. In addition, the algorithm features flexible
handling of the problem, such as adjusting the number of processing
units according to the complexity of problems and the computing power.
The parallelization remains scalable and flexible even when other MARL
algorithms are used. However, there are some other obstacles arising
from the limitations of MDPs that hinder the modeling and application
of real lifeline network system O&M; it is difficult to consider the time
required for actions in the discrete-time domain, and there is a time gap
between state change and maintenance actions. In addition, if more
diverse action options, such as minor repairs or reinforcements, are
given, policy learning at the subsystem level may suffer from the curse of
dimensionality. Nevertheless, for efficient MARL and parallel process-
ing, the proposed framework of deploying agents and periodically syn-
chronizing multiple processors can be applied to various other DRL
methods. As shown in Example 2, vanilla DRLs specialized for parallel
processing are expected to improve exploration and training stability,
thereby enabling simple but powerful end-to-end learning without
additional clustering or cost splitting.

Furthermore, we can extend the proposed method to a partially
observable MDP (POMDP) environment by considering monitoring er-
rors in grasping system states. The computational cost is higher than that
in MDP environment because belief function is continuously updated,
and monitoring action is additionally considered. However, we can
broaden the scalability of the existing algorithms by taking advantage of
parallel processing and system simplification based on network

clustering. Further research is underway to model state changes in the
continuous-time domain and actions that take different times using
Semi-Markov decision processes [23]. In addition, the development of
such a framework is expected to achieve the scalability to cope with
unexpected events (e.g., earthquakes, typhoons).

CRediT authorship contribution statement

Dongkyu Lee: Visualization, Validation, Software, Methodology,
Conceptualization, Investigation, Writing – original draft. Junho Song:
Resources, Project administration, Funding acquisition, Conceptualiza-
tion, Supervision, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

This first author is supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-
2022–00144434). The corresponding author is supported by the Insti-
tute of Construction and Environmental Engineering at Seoul National
University. These supports are gratefully acknowledged.

Appendix A. State-transition matrix

A1. State-transition matrix of component type I for ‘DN’

TI
DN =

⎡

⎢
⎢
⎢
⎢
⎣

0.8 0.2 0 0 0
0 0.8 0.2 0 0
0 0 0.8 0.2 0
0 0 0 0.8 0.2
0 0 0 0 1.0

⎤

⎥
⎥
⎥
⎥
⎦

A2. State-transition matrix of component type II for ‘DN’

TII
DN =

⎡

⎢
⎢
⎢
⎢
⎣

0.7 0.3 0 0 0
0 0.7 0.3 0 0
0 0 0.7 0.3 0
0 0 0 0.7 0.3
0 0 0 0 1.0

⎤

⎥
⎥
⎥
⎥
⎦

A3. State-transition matrix for ‘R’

TI
R = TII

R =

⎡

⎢
⎢
⎢
⎢
⎣

1.0 0 0 0 0
1.0 0 0 0 0
1.0 0 0 0 0
1.0 0 0 0 0
1.0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

Appendix B. Details of PM-DQN and DCMAC for Examples 1 & 2

Table B1–B2

D. Lee and J. Song

Reliability Engineering and System Safety 239 (2023) 109512

14

Appendix C. Optimal threshold states for condition-based maintenance and time intervals for time-based maintenance

Table C1–C2

References

[1] Niu YF. Performance measure of a multi-state flow network under reliability and
maintenance cost considerations. Reliab Eng Syst Saf 2021;215:107822.

[2] Dong Y, Frangopol DM. Risk-informed life-cycle optimum inspection and
maintenance of ship structures considering corrosion and fatigue. Ocean Eng 2015;
101:161–71.

[3] Aryai V, Baji H, Mahmoodian M, Li CQ. Time-dependent finite element reliability
assessment of cast-iron water pipes subjected to spatio-temporal correlated
corrosion process. Reliab Eng Syst Saf 2020;197:106802.

[4] Morales-Torres A, Escuder-Bueno I, Serrano-Lombillo A, Rodríguez JTC. Dealing
with epistemic uncertainty in risk-informed decision making for dam safety
management. Reliab Eng Syst Saf 2019;191:106562.

[5] Ahmad R, Shahrul K. An overview of time-based and condition-based maintenance
in industrial application. Comput Ind Eng 2012;63(1):135–49.

[6] de Jonge B, Teunter R, Tinga T. The influence of practical factors on the benefits of
condition-based maintenance over time-based maintenance. Reliab Eng Syst Saf
2017;158:21–30.

[7] Prajapati A, Bechtel J, Ganesan S. Condition based maintenance: a survey. J Qual
Maintenance Eng 2012.

[8] Omshi EM, Grall A. Replacement and imperfect repair of deteriorating system:
study of a CBM policy and impact of repair efficiency. Reliab Eng Syst Saf 2021;
215:107905.

[9] Martínez-Galán Fernández P, Guillén López AJ, Márquez AC, Gomez Fernández JF,
Marcos JA. Dynamic Risk Assessment for CBM-based adaptation of maintenance
planning. Reliab Eng Syst Saf 2022;223:108359.

Table B1
PM-DQN hyperparameters.

Hyperparameter Example 1 Example 2

Experience replay size 50,000 50,000
Exploration probability ε 0.5 → 0 0.5 → 0
Frequency of updating the target network C 50 50
Initial range of ω [0,8] [0,32]
Nadam learning rate 0.001 0.001
Number of cycles ncyc 10 20
Number of epochs per cycle nepoch 1,000 3,000
Number of subsystems (or agents) 3 8
Number of input layer nodes (per agent) 5 6
Number of output layer nodes (per agent) 32 64
Number of hidden layer nodes (per agent) (32, 32, 32) (64, 64, 64)
Number of used process units npu 20 35
PER importance sampling α 0.6 0.6
PER bias correction β 0.4 0.4
Size of minibatch 64 128

Table B2
Details of DCMAC.

Hyperparameter/Architecture Example 1 Example 2

Number of used process units npu 1 36
Number of epochs per cycle nepoch – 5,000
Number of cycles ncyc – 10
Batch size 64 128
Buffer memory size 300,000 300,000
Clipping factor c for IS weights 2.0 2.0
Exploration probability ε 0.5 → 0.001 0.5 → 0.0001
Number of hidden layer nodes in actor networks (32, 32, 32) (64, 64, 64)
Optimizer for actor & critic networks Nadam Nadam
Nadam learning rate for actor networks 10− 4 [10− 7,10− 3]

Nadam learning rate for critic network 10− 3 [10− 5,10− 3]

Activation function in actor hidden layers SELU SELU
Activation function in critic hidden layers SELU SELU
Activation function in actor output layer Softmax Softmax
Activation function in critic output layer Linear Linear

Table C1
Optimal threshold states for CBM in Examples 1 & 2.

Threshold state of each component

Example 1 [3,3,3,3,3,2,2,3,3,3,1,1,1,1,1]
Example 2 [1,2,1,1,3,3,1,2,4,2,2,2,2,3,3,4,3,3,2,3,2,2,3,4,

3,1,2,3,2,3,2,3,4,2,2,2,3,4,4,1,2,2,1,2,3,1,1,1]

Table C2
Optimal time intervals for TBM in Examples 1 & 2.

Repair interval of each component

Example 1 [15,15,15,10,10,10,15,15,15,15,5,5,5,5,5]
Example 2 [7,7,7,8,11,11,7,10,7,13,7,9,9,9,12,10,9,8,7,11,17,7,13,12,

7,7,9,7,17,9,11,13,9,10,11,7,15,13,11,7,10,17,7,13,11,8,7,8]

D. Lee and J. Song

http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0001
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0001
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0002
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0002
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0002
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0003
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0003
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0003
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0004
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0004
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0004
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0005
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0005
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0006
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0006
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0006
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0007
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0007
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0008
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0008
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0008
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0009
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0009
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0009

Reliability Engineering and System Safety 239 (2023) 109512

15

[10] Andriotis CP, Papakonstantinou KG. Managing engineering systems with large
state and action spaces through deep reinforcement learning. Reliab Eng Syst Saf
2019;191:106483.

[11] Pages A, Gondran M, Griffin E. System reliability: evaluation & prediction in
engineering. New York, NY: Springer; 1986.

[12] Lewis EE. Introduction to reliability engineering. 2nd ed. New York, NY: John
Wiley & Sons; 1995.

[13] Der Kiureghian A, Ditlevsen OD, Song J. Availability, reliability and downtime of
systems with repairable components. Reliab Eng Syst Saf 2007;92(2):231–42.

[14] Ouyang Y, Madanat S. An analytical solution for the finite-horizon pavement
resurfacing planning problem. Transp Res Part B 2006;40(9):767–78.

[15] Compare M, Marelli P, Baraldi P, Zio E. A Markov decision process framework for
optimal operation of monitored multi-state systems. In: Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 232;
2018. p. 677–89.

[16] Nielsen JS, Sørensen JD. Methods for risk-based planning of O&M of wind turbines.
Energies 2014;7(10):6645–64.

[17] Ohlmann JW, Bean JC. Resource-constrained management of heterogeneous assets
with stochastic deterioration. Eur J Oper Res 2009;199(1):198–208.

[18] Medury A, Madanat S. Incorporating network considerations into pavement
management systems: a case for approximate dynamic programming. Transp Res
Part C 2013;33:134–50.

[19] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D,
Riedmiller M. Playing atari with deep reinforcement learning. arXiv preprint 2013.
arXiv:1312.5602.

[20] Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Hassabis D.
Human-level control through deep reinforcement learning. Nature 2015;518
(7540):529–33.

[21] Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Hassabis D.
Mastering the game of Go with deep neural networks and tree search. Nature 2016;
529(7587):484–9.

[22] Watkins CJ, Q-learning DP. Mach Learn 1992;8(3):279–92.
[23] Papakonstantinou KG, Shinozuka M. Planning structural inspection and

maintenance policies via dynamic programming and Markov processes. Part I:
theory. Reliab Eng Syst Saf 2014;130:202–13.

[24] Papakonstantinou KG, Shinozuka M. Planning structural inspection and
maintenance policies via dynamic programming and Markov processes. Part II:
POMDP implementation. Reliab Eng Syst Saf 2014;130:214–24.

[25] Memarzadeh M, Pozzi M, Zico Kolter J. Optimal planning and learning in uncertain
environments for the management of wind farms. J Comput Civ Eng 2015;29(5):
04014076.

[26] Yang A, Qiu Q, Zhu M, Cui L, Chen W, Chen J. Condition based maintenance
strategy for redundant systems with arbitrary structures using improved
reinforcement learning. Reliab Eng Syst Saf 2022:108643.

[27] Hasselt H. Double Q-learning. Adv Neural Inf Process Syst 2010:23.
[28] Zhang N, Si W. Deep reinforcement learning for condition-based maintenance

planning of multi-component systems under dependent competing risks. Reliab
Eng Syst Saf 2020;203:107094.

[29] Mohammadi R, He Q. A deep reinforcement learning approach for rail renewal and
maintenance planning. Reliab Eng Syst Saf 2022:108615.

[30] Tan M. Multi-agent reinforcement learning: independent vs. cooperative agents. In:
Proceedings of the tenth international conference on machine learning; 1993.

[31] Foerster J, Nardelli N, Farquhar G, Afouras T, Torr PH, Kohli P, Whiteson S.
Stabilising experience replay for deep multi-agent reinforcement learning. In:
International conference on machine learning; 2017.

[32] Sunehag P, Lever G, Gruslys A, Czarnecki WM, Zambaldi V, Jaderberg M,
Graepel T. Value-decomposition networks for cooperative multi-agent learning.
arXiv preprint 2017. arXiv:1706.05296.

[33] Gronauer S, Diepold K. Multi-agent deep reinforcement learning: a survey. Artif
Intell Rev 2022;55:895–943.

[34] Andriotis CP, Papakonstantinou KG. Deep reinforcement learning driven
inspection and maintenance planning under incomplete information and
constraints. Reliab Eng Syst Saf 2021;212:107551.

[35] Zhou Y, Li B, Lin TR. Maintenance optimisation of multicomponent systems using
hierarchical coordinated reinforcement learning. Reliab Eng Syst Saf 2022;217:
108078.

[36] Nguyen VT, Do P, Vosin A, Iung B. Artificial-intelligence-based maintenance
decision-making and optimization for multi-state component systems. Reliab Eng
Syst Saf 2022;228:108757.

[37] Rashid T, Samvelyan M, Schroeder C, Farquhar G, Foerster J, Qmix WS. Monotonic
value function factorisation for deep multi-agent reinforcement learning. In:
International Conference on Machine Learning; 2018.

[38] Lim HW, Song J, Kurtz N. Seismic reliability assessment of lifeline networks using
clustering-based multi-scale approach. Earthquake Eng Struct Dyn 2015;44(3):
355–69.

[39] Lee D, Song J. Multi-scale seismic reliability assessment of networks by centrality-
based selective recursive decomposition algorithm. Earthquake Eng Struct Dyn
2021;50(8):2174–94.

[40] Ahuja RK, Kodialam M, Mishra AK, Orlin JB. Computational investigations of
maximum flow algorithms. Eur J Oper Res 1997;97(3):509–42.

[41] Lee YJ, Song J, Gardoni P, Lim HW. Post-hazard flow capacity of bridge
transportation network considering structural deterioration of bridges. Struct
Infrastruct Eng 2011;7(7–8):509–21.

[42] Choi E, Song J. Cost-effective retrofits of power grids based on critical cascading
failure scenarios identified by multi-group non-dominated sorting genetic
algorithm. Int J Disaster Risk Reduct 2020;49:101640.

[43] Sutton RS, Barto AG. Reinforcement learning: an introduction. Cambridge, MA:
MIT press; 2018.

[44] Bellman R. Dynamic programming. Science 1996;153(3731):34–7.
[45] Lin LJ. Self-improving reactive agents based on reinforcement learning, planning

and teaching. Mach Learn 1992;8(3–4):293–321.
[46] Schaul T, Quan J, Antonoglou I, Silver D. Prioritized experience replay. arXiv

preprint 2015. arXiv:1511.05952.
[47] Kok JR, Vlassis N. Collaborative multiagent reinforcement learning by payoff

propagation. J Mach Learn Res 2006;7:1789–828.
[48] Von Luxburg U. A tutorial on spectral clustering. Stat Comput 2007;17(4):

395–416.
[49] van Dongen S. Ph.D. Thesis. University of Utrecht; 2000.
[50] Gomez C, Sanchez-Silva M, Dueñas-Osorio L, Rosowsky D. Hierarchical

infrastructure network representation methods for risk-based decision-making.
Struct Infrastruct Eng 2013;9(3):260–74.

[51] Newman ME, Girvan M. Finding and evaluating community structure in networks.
Phys Rev E 2004;69(2):026113.

[52] Girvan M, Newman ME. Community structure in social and biological networks.
Proc Natl Acad Sci 2002;99(12):7821–6.

[53] Stern RE, Song J, Work DB. Accelerated Monte Carlo system reliability analysis
through machine-learning-based surrogate models of network connectivity. Reliab
Eng Syst Saf 2017;164:1–9.

[54] Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W.
Openai gym. arXiv preprint 2016. arXiv:1606.01540.

[55] Chollet F. Keras. 2015. Available at: https://keras.io.
[56] Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Zheng X. TensorFlow: a

system for large-scale machine learning. In: 12th USENIX symposium on operating
systems design and implementation; 2016. p. 265–83.

[57] Dozat T. Incorporating nesterov momentum into adam. 2016.
[58] Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization

problems. SIAM J Optim 2012;22(2):341–62.
[59] Loshchilov I, Sgdr HF. Stochastic gradient descent with warm restarts. arXiv

preprint 2016. arXiv:1608.03983.
[60] Python Software Foundation. Multiprocessing - Process-based parallelism. 2023.

Available at: https://docs.python.org/3/library/multiprocessing.html.

D. Lee and J. Song

http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0010
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0010
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0010
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0011
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0011
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0012
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0012
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0013
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0013
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0014
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0014
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0015
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0015
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0015
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0015
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0016
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0016
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0017
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0017
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0018
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0018
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0018
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0019
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0019
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0019
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0020
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0020
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0020
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0021
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0021
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0021
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0022
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0023
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0023
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0023
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0024
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0024
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0024
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0025
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0025
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0025
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0026
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0026
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0026
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0027
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0028
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0028
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0028
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0029
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0029
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0030
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0030
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0031
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0031
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0031
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0032
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0032
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0032
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0033
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0033
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0034
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0034
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0034
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0035
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0035
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0035
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0036
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0036
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0036
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0037
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0037
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0037
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0038
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0038
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0038
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0039
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0039
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0039
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0040
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0040
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0041
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0041
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0041
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0042
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0042
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0042
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0043
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0043
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0044
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0045
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0045
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0046
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0046
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0047
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0047
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0048
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0048
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0049
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0050
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0050
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0050
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0051
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0051
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0052
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0052
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0053
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0053
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0053
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0054
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0054
https://keras.io
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0056
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0056
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0056
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0058
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0058
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0059
http://refhub.elsevier.com/S0951-8320(23)00426-X/sbref0059
https://docs.python.org/3/library/multiprocessing.html

	Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network
	1 Introduction
	2 Background information
	2.1 Problem statement
	2.1.1 Descriptions of system state
	2.1.2 Descriptions of maintenance and degradation process
	2.1.3 Descriptions of operation and maintenance costs

	2.2 System-level sequential maintenance optimization
	2.3 Double Deep Q-Network with prioritized experience replay
	2.4 Factorization in multi-agent reinforcement learning

	3 Proposed algorithm: parallelized multi-agent deep Q-network (PM-DQN)
	3.1 Step 1: identification of subsystems based on community detection
	3.2 Step 2: factorization of centralized costs
	3.3 Step 3: parallel processing-based hyperparameter tuning

	4 Numerical examples
	4.1 Example 1: multi-state general system with 15 components
	4.2 Example 2: the simplified California gas distribution system with 48 gas substations

	5 Summary and conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Appendix A State-transition matrix
	Appendix B Details of PM-DQN and DCMAC for Examples 1 & 2
	Appendix C Optimal threshold states for condition-based maintenance and time intervals for time-based maintenance
	References

