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ABSTRACT
Modern societies depend on various lifeline networks such as transportation, electricity, and gas distribution systems, which are
vulnerable to seismic events. Although numerous analytical and simulation-based methods have been developed for efficient
seismic system reliability analysis (SRA), dealing with high-dimensional events arising from large-scale infrastructure networks
remains challenging. To address this challenge, this paper proposes a system reliability method that efficiently computes the
connectivity of directed graphs. Themethod employs the dual graph representation of a target system to automate the construction
of a Bayesian network (BN). This enables the application of the junction tree algorithm, a well-established BN inference method,
to perform reliability analysis and quantify complexity based on a network topology. The paper further tackles SRA challenges
associated with fully correlated seismic uncertainties, which typically lead to a significant increase in computational complexity.
To this end, we propose to combine a cross entropy-based adaptive importance sampling technique with Rao-Blackwellization.
Thereby, sampling methods and exact analytical inference can be effectively combined to improve computational efficiency for
seismic SRA of lifeline networks. The proposed methods are demonstrated through three numerical examples.

1 Introduction

Lifeline networks that support transportation and services
such as electricity, water, and gas are a critical backbone of
modern societies. As these network systems become increasingly
complex and interconnected, they function as a collective entity
rather than a set of independent components. In the face of
earthquakes, such interdependence may result in cascading
failures, extending beyond the initial physical damage to
components. For example, a seismic event may damage lifeline

systems, resulting in casualties and economic losses at an
extended scale. To mitigate such seismic risks and maximize
the efficiency of evacuations, many emergency evacuation plans
utilize contraflow lane reversal [1, 2], which requires the accurate
vulnerability assessment of lifeline systems and quantification of
varying contributions of relevant factors.

Seismic system reliability analysis (SRA) of lifeline network
systems encounters several computational challenges, including
identifying high-dimensional failure domains, managing
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exponentially growing combinations, and calculating low system
failure probabilities. To address these challenges, various SRA
methods handling complex networks have been developed, for
example, approximation methods [3], bounds methods [4–6],
simulation-based approaches [7–10], and surrogate modeling-
based methods [11, 12]. Although these methods represent
significant advances in the SRA of large-scale networks, they still
face substantial limitations in practical applications. A primary
challenge is the difficulty in quantifying the complexity of SRA,
including the applicable coverage of the method. Furthermore,
especially for simulation-based approaches, their accuracy and
efficiency drastically decrease when dealing with low-probability
events. In addition, currentmethods often fail to explicitly exploit
the causal dynamics of a system failure event, which hampers
the planning of effective mitigation strategies.

Causal relationships can be effectively represented by employing
a probabilistic graphical model, Bayesian network (BN) [13]. BN’s
visualization of causal relationships facilitates not only prediction
but also diagnostic reasoning—identifying likely causes given
observed effects—which is invaluablewhenpinpointing potential
failures is critical. However, they are quickly confronted with
computational challenges due to the exponentially increasing
computational memory of conditional probability tables (CPTs)
as a system size grows. Numerous studies have been proposed
to address this issue by developing efficient BN structures for
modeling system performance [14], data processing techniques
[15], data structures [16, 17], or sampling-based BN inference
[18, 19]. Despite these efforts to expand the range of applicable
systems, BN-based methods still have limitations in the address-
able number of components. In addition, there are no systematic
methods for quantifying the precise extent of this limitation
(i.e., the number of addressable components), which would
provide insightful information for selecting an appropriate SRA
method.

This paper proposes a BN-based reliability method for network
systems and their complexity quantification. Among many pos-
sible definitions of network performance, this paper focuses on
the connectivity of an origin-destination (OD) pair in directed
graphs. This measure represents, for example, the accessibility
to hospitals, healthcare locations, and temporary housing from
residential areas in preplanned lane reversal scenarios on high-
ways. That is, the system failure probability is defined as the
probability that there are no viable paths for a given OD pair. The
focus of this paper is on networks represented by directed acyclic
graphs (DAGs), but the proposed preprocessing schemes can
address presence of cycles. The construction of BN is automated
by the dual graph of a target system. Then, the junction tree
(JT) algorithm, a well-established BN inference method, can be
applied to the constructed BN to perform SRA and complexity
quantification, which depends on the topology of the systems
[20]. Building upon this development, we extend the SRA to
account for fully correlated random variables that arise from
seismic uncertainties. By implementing a cross-entropy-based
adaptive importance sampling (CE-AIS) [21–26] for a subset of
random variables in a BN and applying the JT algorithm to the
remaining variables [17, 27], the proposed method can efficiently
combine exact analytical inference and sampling algorithms.
Moreover, the method can be readily extended to facilitate
probabilistic inference, such as parameter sensitivity analysis.

These capabilities enable the proposed framework to provide
actionable insights into the seismic resilience of network systems.

The paper is organized as follows. Section 2 briefly reviews BN
and JT and introduces the concept of graphical representation,
including primal and dual representation of lifeline systems.
Section 3 presents a new SRA method based on BN and JT using
dual graphs with preliminary works to enhance the usability and
efficiency of the method. This section also proposes a method
to quantify the complexity of SRA in various topologies. In
Section 4, the proposed method integrated with CE-AIS and
the Rao-Blackwellization (RB) technique is applied to seismic
SRA. Then, in Section 5, three numerical examples are analyzed
to demonstrate the efficiency and usefulness of the proposed
method. Finally, the conclusions and recommendations for future
work are given in Section 6.

2 Background

2.1 Probabilistic Graphical Models

2.1.1 Bayesian Network

A BN is a probabilistic graphical model that visualizes the
directional dependence between random variables. A BN can be
described as a DAG, 𝐺 = (𝑵, 𝑬), where 𝑵 denotes a set of the
nodes corresponding to the random variables, and 𝑬 is a set of
directed edges indicating directional dependencies between pairs
of nodes. When an edge points from node𝑁𝑖 to node𝑁𝑗, they are
referred to as a parent node and its child node, respectively.

Once a BN is constructed, each node𝑁𝑖 ∈ 𝑵 has to be quantified
through a probability distribution that depends on its parent
nodes 𝑃𝑎(𝑁𝑖), that is, 𝑃(𝑁𝑖|𝑃𝑎(𝑁𝑖)). Subsequently, the overall
joint probability distribution 𝑃(𝑵), represented by a BN, becomes
a product of the conditional probabilities of individual nodes, that
is,

𝑃 (𝑵) =
∏

𝑁𝑖∈𝑵

𝑃 (𝑁𝑖|𝑃𝑎 (𝑁𝑖)) . (1)

Equation (1) shows how BN factorizes a high-dimensional joint
probability distribution 𝑃(𝑵) into lower-dimensional distribu-
tions 𝑃(𝑁𝑖|𝑃𝑎(𝑁𝑖)). In addition to the visualization of conditional
independence, such lower-dimensional representation facilitates
constructing probability models based on domain knowledge
[27]. Moreover, it can significantly reduce the computer memory
demand required to store distributions.

However, BNs have limitations in that, as the number of parent
nodes increases, the memory required to store the conditional
probability 𝑃(𝑁𝑖|𝑃𝑎(𝑁𝑖)) grows exponentially. This means that,
given too many parent nodes, the construction of BNs becomes
infeasible. Additionally, the BNmust not have any directed cycles,
which limits the class of problems that can be handled by the
BN methodology. As proposed in Section 3.1.1, this limitation
can be overcome by partitioning the cyclic graph into multiple
acyclic subgraphs, thereby making the application of BN more
versatile.
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2.1.2 Junction Tree Algorithm

The JT algorithm [28] is a graphical method that provides a
structured approach to inferring a BN model. Unlike BN, a JT
is an undirected tree-shaped graph whose nodes represent each
clique (i.e., a set of clustered randomvariables) and edges describe
the intersection of two adjacent cliques (i.e., a set of common
variables between a clique pair). A BN can be easily transformed
into a JT, for which several general-purpose algorithms [29] and
useful tactics (e.g., moralization, triangulation, tree decomposi-
tion, andmaximum spanning tree) are available [27]. Once a JT is
constructed, probabilistic inference can be performed by passing
messages (in the form of probability distributions) between the
cliques of the tree. This message-passing process is equivalent to
distributing and combining local probability information across
a JT. After updating the messages of all cliques, one can compute
the marginal probability distribution of any random variable by
visiting a clique that includes the random variables of interest.

The JT algorithm could provide a systematic approach to prob-
abilistic inference and is one of the most powerful methods for
BN inference. However, the JT algorithm has a similar limitation
to BN in that the required memory grows exponentially with the
number of random variables within a single clique. A clique size
can increase rapidly when a large number of nodes in a BN are
densely connected (i.e., dependent). Various software programs
have been developed to implement the JT algorithm, and this
paper utilizes the BRML toolkit developed by Barber [29] to set
up BN models and run the JT algorithm.

2.2 Graphical Representation of Lifeline
Systems: Primal and Dual Graphs

Lifeline systems consist of various components that are at risk
of failure. Their functionality can be represented by a graph, in
which node-type components (e.g., bridges, substations) and line-
type components (e.g., roads, pipelines) are modeled as vertices
and arcs, respectively. To apply the BN-based method proposed
in Section 3, all components at risk of failure must be represented
as arcs, which can be readily addressed by graph transformation
techniques [30–32]. In this paper, an original graph representing
a network system of interest is referred to as a “primal graph”.

In a “dual graph” representation, arcs in the primal graph are
converted to vertices, and vertex pairs are connected if their
corresponding arcs are directly connected in the primal one. This
alternative representation can reveal the hidden properties that
are not apparent in the primal graph [33]. In this study, we pro-
pose using a dual representation to construct the BN for reliability
analysis by representing fragile arcs as BN nodes (i.e., random
variables), as explained in detail in Section 3. To avoid confusion
between BN graphs and graphs of lifeline network systems,
components in a system are hereafter referred to as vertices and
arcs, while those of BNs (including JTs) are callednodes and edges.

3 Proposed System Reliability Analysis Method

This section proposes a novel SRAmethod that employs BNs, the
JT algorithm, and dual graphs. The advantages of the proposed

FIGURE 1 Flowchart of the proposed seismic system reliability
analysis (SRA) method.

method are three-fold: (1) the computational complexity of
an arbitrary network system can be quantified in terms of
the required memory; (2) the proposed method can perform
probabilistic inference (e.g., connectivity, parameter sensitivity),
whose exact solution was previously considered unattainable;
and (3) the proposed processes can be implemented by existing
BN algorithms, which are readily available in general-purpose
software programs.

Before executing the proposed SRA method, two preliminary
tasks are conducted to maximize computational efficiency. Then,
a BN is automatically constructed by using the dual representa-
tion of the preprocessed graph. After adding information about
component failure probabilities, one can transform the BN into
a JT and obtain a message-passing schedule, which can be done
by employing an existing JT algorithm. The final JT model can
be used for complexity quantification and probabilistic inference.
Figure 1 illustrates an overview of the proposed framework, and
the details of each step are described in the following subsections.

3.1 Preprocessing

3.1.1 Cycle Decomposition

Tomitigate the limitation of BNs in handling graphswith directed
cycles, a preprocessing scheme is proposed for decomposing the
original cyclic graph into multiple acyclic subgraphs. A cycle is
defined as multiple arcs forming a closed polygon, so that the
cycle is broken when one or more arcs fail (and thus removed
from the graph). If all arcs in a cycle survive, the cycle can be
considered as a single super-component. This means that a graph
with a single cycle consisting of 𝑛 arcs can be decomposed into
(𝑛 + 1) directed acyclic subgraphs. Specifically, the first subgraph
represents the graph where one arc of the cycle fails, and the
second represents the one where the first arc works but another
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FIGURE 2 An example directed graph 𝐺 with a triangular cycle
nodes 3 → 4 → 5.

arc fails. In this way, the ith subgraph, 𝑖 = 1, … , 𝑛, is created
with (𝑖 − 1) arcs in operation and the ith arc broken. Finally, the
(𝑛 + 1)th subgraph with all working arcs is equivalent to a graph
where the inflowand outflowarcs to the cycle are concentrated on
a single super-component (i.e., conceptual vertex) that replaces
the whole cycle. The reliability analysis for the graph with 𝑛cyc

cycles requires 𝑛sub decomposed subgraphs with

𝑛sub =
𝑛cyc∏
𝑖=1

(𝑛𝑖 + 1) , (2)

where 𝑛𝑖 is the number of arcs in the ith cycle, 𝑖 = 1, … , 𝑛cyc.

For example, consider a random directed graph 𝐺 with a cycle
consisting of three arcs (i.e., 𝑛cyc = 1 and 𝑛1 = 3) in Figure 2. The
origin (O) and destination (D) vertices are set to Vertices 1 and
6, respectively. Then, the cycle decomposition scheme generates
(3 + 1) = 4 acyclic subgraphs, 𝐺1, … , 𝐺4, as shown in Figure 3.
After the decomposition, the failure probability of 𝐺 in terms of
the OD connectivity, 𝑃𝑓(𝐺), can be evaluated based on the failure
probabilities of its subgraphs, that is,

𝑃𝑓 (𝐺) =
𝑛sub∑
𝑗=1

𝐿𝑗𝑃𝑓

(
𝐺𝑗

)
, (3)

where𝐺𝑗 denotes the jth subgraph; 𝐿𝑗 is the probability of𝐺𝑗; and
𝑃𝑓(𝐺𝑗) is the failure probability of 𝐺𝑗.

This preprocessing technique enables BN-based approaches to
handle even undirected graphs that can be decomposed into a set
ofDAGs. Eachundirected arc is equivalent to a cyclewith two arcs
pointing toward each other. However, analyzing all subgraphs
becomes impractical when the number of arcs is large, due to
the exponential growth of 𝑛sub. In such cases, the top subgraphs
with the highest 𝐿𝑗 can be selected in a way that their cumulative
probability sum,

∑
𝐿𝑗, reaches a target threshold (e.g., 𝐿𝑡 = 0.95).

This approach allows for the computation of upper and lower
bounds, with a width of 1 −

∑
𝐿𝑗 [6]. Previous research such as

[6, 34] has shown that a significantly small subset of subgraphs
often accounts for a probability close to one.

3.1.2 Graph Simplification

When dealing with large-scale directed graphs, a large fraction
of vertices may be unreachable from Vertex O or to Vertex D,
making SRA unnecessarily complex. To further simplify SRA,
we propose the second preprocessing strategy that removes these
vertices, and the arcs connected thereto in the primal graph or
its subgraphs. This strategy can be implemented by any basic
connectivity analysis algorithms, including minimum spanning
tree. Since these are highly dependent on an OD pair, the need
for each componentmay vary depending on theOD vertices, even
within the same graph.

This optional preprocessing step is highly recommended, espe-
cially for large-scale graphs. Marginalization can eliminate
unnecessary random variables during message passing in a
JT. With the proposed preprocess, however, the computation
becomes much more efficient than the procedure with marginal-
ization alone. From numerical experiments, we found that this
strategy greatly improves the efficiency of the proposed algo-
rithm. This works particularly well for random graphs, which
frequently contain numerous isolated components from the OD
pair, providing clues to problems that may be intractable in their
original form.

3.2 Main Procedures

3.2.1 Automation of BN Construction Using Dual
Graph

The proposed method starts by constructing a BN with nodes 𝑆

and 𝑇𝑖 for 𝑖 ∈ [1, 𝑁], where 𝑁 represents the number of arcs in
the primal graph of a target system. 𝑆, representing the system
connectivity event, is denoted as a binary random variable, whose
value is 1 if the OD pair is connected, and 0 otherwise. Similarly,
each 𝑇𝑖 is a binary random variable equal to 1 if the head of arc 𝑖

is reachable from Vertex O, and 0 otherwise. In the BN, node 𝑆 is
located at the position of Vertex D, and nodes 𝑇𝑖 are positioned on
their respective arcs. Then, the nodes are connected by directed
edges to describe the connectivity between arcs in the primal
graph. The generated BN has a topology equivalent to the dual
representation of the target system, except for 𝑆 and the edge(s)
toward it. In other words, by adding 𝑆 and its incoming edge(s) to
the dual representation of the target system expressed as a DAG,
we can automate the construction of the BN.

For example, consider the example network in Figure 4 [35],
which has four vertices (blue circles) and five directed arcs (green
arrows). Then, an initial BN can be constructed by using the dual
representation as shown in the red dashed box in Figure 5. The
BN construction is completed by adding node 𝑆 and two directed
edges headed to 𝑆 (blue circle and arrows in Figure 5).

The proposed method achieves efficiency by leveraging a dis-
tinctive characteristics of connectivity analysis that conditional
independence holds between arcs that are not directly connected.
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FIGURE 3 Equivalent subgraphs after cycle decomposition (dashed: failed arcs, black solid: survival arcs, red: unknown).

FIGURE 4 Example graph with five arcs [35].

FIGURE 5 Constructed Bayesian network (BN) via dual represen-
tation of the original graph in Figure 4.

In other words, the connectivity of an arc from an origin vertex
is independent of the status of the other vertices if the status
of the incoming arcs is known. For instance, in Figure 4, the

TABLE 1 CPT of 𝑇𝑖 given 𝑋𝑖.

𝑷(𝑻𝒊|𝑿𝒊) 𝑻𝒊 = 𝟏 𝑻𝒊 = 𝟎

𝑋𝑖 = 1 1 0
𝑋𝑖 = 0 0 1

connectivity between Arc 5 and Vertex O is independent of
Arcs 1 and 4, conditioned on the connectivity of Arcs 2 and
3. Figure 5 visualizes such independence relationships more
intuitively.We note that this characteristic does not hold for other
types of analysis, includingmaximum flow analysis. For example,
in a traffic simulation analysis, traffic is assigned sequentially
by taking into account traffic flows on both preceding and
succeeding arcs.

3.2.2 Addition of Component Failure Events

The BN constructed in Section 3.2.1 contains only topological
information of a target system, without considering the compo-
nent failure events. Therefore, to represent component failure
events, binary random variables 𝑋𝑖 for 𝑖 ∈ [1, 𝑁] are introduced,
indicating whether arc 𝑖 is functional (𝑋𝑖 = 1) or not (𝑋𝑖 = 0). For
each 𝑖, node 𝑋𝑖 is added as a parent node of 𝑇𝑖. If the component
failure events are statistically independent, this approach leads to
a complete construction of a BN model. For example, Figure 6a
illustrates the final BN representing the example graph after
adding independent component failure events. The CPT of 𝑇𝑖

can be constructed as Table 1 if the Arc 𝑖 is connected to Vertex
O (e.g., Arcs 1 and 2 in Figure 4). On the other hand, if Arc
𝑖 is reachable from Vertex O but is not connected, the CPT is
modified as Table 2. Finally, the CPT of 𝑆 is presented in Table 3.
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FIGURE 6 Constructed Bayesian network (BN) of example graph with (a) independent; and (b) interdependent component failure events.

TABLE 2 CPT of 𝑇𝑖 given 𝑋𝑖 and ∀𝑇𝑘 ∈ 𝑃𝑎(𝑇𝑖).

𝑷(𝑻𝒊|𝑿𝒊, ∀𝑻𝒌 ∈ 𝑷𝒂(𝑻𝒊)) 𝑻𝒊 = 𝟏 𝑻𝒊 = 𝟎∑
𝑇𝑘∈𝑃𝑎(𝑇𝑖)

𝑇𝑘𝑋𝑖 ≥ 1 1 0∑
𝑇𝑘∈𝑃𝑎(𝑇𝑖)

𝑇𝑘 = 0 0 1

𝑋𝑖 = 0 0 1

TABLE 3 CPT of 𝑆 given ∀𝑇𝑘 ∈ 𝑃𝑎(𝑆).

𝑷(𝑺|∀𝑻𝒌 ∈ 𝑷𝒂(𝑺)) 𝑺 = 𝟏 𝑺 = 𝟎∑
𝑇𝑘∈𝑃𝑎(𝑆)

𝑇𝑘 ≥ 1 1 0∑
𝑇𝑘∈𝑃𝑎(𝑆)

𝑇𝑘 = 0 0 1

If component failure events are interdependent, their dependence
needs to be incorporated in the BN graph. For example, Figure 6b
shows the modified BN for example graph, where all 𝑋𝑖 are
correlated and therefore are fully connected by undirected edges.

3.2.3 JT ConstructionWith Message-Passing
Scheduling

For probabilistic inference and complexity quantification, the BN
graph constructed in Section 3.2.2 is used to build a JT. This
can be done automatically using existing algorithms, including
the maximum spanning tree algorithm [29]. Various JTs can
be constructed from a single BN depending on the order of
clique considerations and triangulations [36]. We note that any
JT algorithm is applicable to the proposed method below.

Figure 7a represents an example of the JT corresponding to the
BN in Figure 6a. Using the JT graph, the CPTs associated with
a clique can be inferred, for example, Table 1 for 𝐶1 and 𝐶2,

Table 2 for 𝐶3 to 𝐶5, Table 3 for 𝐶8. For the exact inference of
𝑆, the message-passing can be scheduled as 𝐶1 → 𝐶3, 𝐶2 → 𝐶4,
𝐶3 → 𝐶6, 𝐶4 → 𝐶7, 𝐶5 → 𝐶6, 𝐶6 → 𝐶7, and 𝐶7 → 𝐶8, as shown in
Figure 7a. On the other hand, if the component failure events are
interdependent as in Figure 6b, the corresponding JT is obtained

as shown in Figure 7b. In this case, the message-passing scheme
between the two cliques is obtained as 𝐶1 → 𝐶2. We note that the
large clique 𝐶1, containing all component events and arc events,
indicates the exponential increase in computational cost. In other
words, the interdependency between component failure events
makes SRA problems infeasible to solve even with a moderate
number of random variables (e.g., 25). We address this issue by
the proposed SRA method described in Section 4.

3.3 Applications of the Proposed Method

3.3.1 Complexity Quantification of SRA

Since configuring cliques (i.e., multiplying associated CPTs in
each clique and storing them) is the bottleneck of computational
time and memory, computational complexity can be approxi-
mately quantified by the sum of clique sizes (i.e., the number of
probabilities in an associated CPT). Since all 𝑇𝑖 and 𝑋𝑖 are binary
random variables, the computational complexity, 𝐶𝑂𝐿, is defined
as

COL =
∑

𝑗

2
𝑛cq𝑗 , (4)

where 𝑛cq𝑗
is the number of random variables in the jth clique.

For example, the computational complexity of Figure 7a,b is
calculated as CO𝐿𝑎 = 2 ⋅ 22 + 5 ⋅ 23 + 24 = 64 and CO𝐿𝑏 = 210 +
23 = 1, 032, respectively. The complexity measure can quantify
the significantly increased computational cost of the model in
Figure 7b.

To investigate the computational complexity measure in Equa-
tion (4), four representative graph topologies in Figure 8 are
analyzed, assuming statistical independence between component
events. Figure 9a,b respectively shows the changes in 𝐶𝑂𝐿 and
the maximum clique size for each graph topology as the number
of arcs varies from 4 to 150. Interestingly, the logarithm of 𝐶𝑂𝐿

and the maximum clique size exhibit a linear relationship (𝑅2 =
99.43% for the entire data in Figure 9). This implies that the
largest clique often dominates computational complexity. In line
and tree graphs, for example, both the maximum clique size
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FIGURE 7 Constructed junction tree (JT) with (a) independent component failure events; and (b) dependent component failure events.

FIGURE 8 Representative graph topologies.

and 𝐶𝑂𝐿 indicate that complexity is almost constant regardless
of the number of arcs. On the other hand, in complete graphs,
the maximum clique size increases linearly in terms of the
number of arcs, which is consistent with the results indicating
that 𝐶𝑂𝐿 increases exponentially. The maximum clique size of
the grid graph also increases with the number of arcs, but at a
much slower rate than that of the complete graph. Considering
their high proximity, the complexity of the example graphs in
Section 4 is measured in terms of maximum clique size instead
of 𝐶𝑂𝐿.

The proposed quantification is advantageous as the quantifi-
cation of graph topology complexity has remained elusive.
Although there are several metrics developed to this end [30,
37], the proposed approach provides a direct metric for SRA.
Thereby, one can select an appropriate SRA method before
performing analysis. If a given topology is found to have too
high complexity to apply analytical methods, simulation-based
methods or advanced BN inference algorithms can be employed
instead of basic BN inference algorithms (e.g., message-passing
or variable elimination).

2393 of 2402

 10969845, 2025, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eqe.4362, W

iley O
nline L

ibrary on [10/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FIGURE 9 Computational complexity by the number of arcs in each graph topology evaluated in terms of (a) 𝐶𝑂𝐿; and (b) maximum clique size.

3.3.2 Probabilistic Inference: Analysis of System
Reliability and Parameter Sensitivity

If complexity is quantified to be manageable (e.g., all cliques
include less than or equal to 25 randomvariables), an exact system
failure probability, 𝑃𝑓≔𝑃(𝑆 = 0), can be evaluated by performing
message-passing of a constructed JT. Manageable complexity is
expected when component events are independent, and each
vertex in a primal graph has only a few incoming arcs (e.g.,
Figure 8a–c).

If complexity seems unmanageable, advanced inference strate-
gies, such as RB (also known as collapsed particles) [17, 27],
can be employed. RB is regarded as a hybrid approach that
generates samples for a subset of random variables while, for
other variables, performing exact inference over conditional
probability distributions. By strategically selecting the variables
to be sampled, exact inference can have significantly lower com-
putational complexity, while effectively controlling a sampling
variance.

A JT can also be used to calculate parameter sensitivities of 𝑃𝑓,

which provides information on the impact of sudden external
actions, such as degradation or reinforcement of components, on
the system reliability. The sensitivities of conditional probabilities
of component events, 𝑃(𝑁𝑗|𝑃𝑎(𝑁𝑗)), with respect to a parameter
𝜃𝑘 (e.g., a parameter of seismic capacity) are derived from
Equation (1) as

𝜕𝑃 (𝑵)

𝜕𝜃𝑘

=
∑

𝑁𝑗∈𝑵

⎡⎢⎢⎣
𝜕

𝜕𝜃𝑘

𝑃
(
𝑁𝑗|𝑃𝑎

(
𝑁𝑗

))
⋅

∏
𝑁𝑖∈𝑵−{𝑁𝑗}

𝑃 (𝑁𝑖|𝑃𝑎 (𝑁𝑖))

⎤⎥⎥⎦ ,

(5)
where each square bracket is computed by replacing the CPT
of 𝑃(𝑁𝑗|𝑃𝑎(𝑁𝑗)) with 𝜕𝑃(𝑁𝑗|𝑃𝑎(𝑁𝑗)) ∕𝜕𝜃𝑘 in a JT graph [38].
However, even without the CPT of 𝜕𝑃(𝑁𝑗|𝑃𝑎(𝑁𝑗)) ∕𝜕𝜃𝑘, one
can approximate the sensitivity of the system failure probability,
𝜕𝑃𝑓∕𝜕𝜃𝑘, via the same message-passing procedure that was
previously scheduled as

𝜕𝑃𝑓

𝜕𝜃𝑘

≅
𝑃
(
𝑆 = 0| 𝜃𝑘 = 𝜃0

𝑘
+ 𝛿

)
− 𝑃𝑓

𝛿
, (6)

where 𝜃0
𝑘
denotes the initial value of 𝜃𝑘; and 𝛿 denotes a

sufficiently small positive constant. A sensitivity measure can be
used to evaluate the upgrade worth, which quantifies the impact
of each component’s reinforcement on the system [39, 40], that is,

𝐼𝜃𝑘
= −

[
𝜕𝑃𝑓

𝜕𝜃𝑘

]
Δ𝜃𝑘, (7)

where 𝐼𝜃𝑘
denotes the upgrade worth of 𝜃𝑘; and Δ𝜃𝑘 denotes the

variation in 𝜃𝑘 that can be achieved by a unit cost increment.

4 Seismic SRA Using Rao-Blackwellization

4.1 Seismic SRA of Lifeline Systems

For a seismic SRA, the binary random variable 𝑋𝑖 can be defined
as an event that the seismic demand of the ith component, 𝐷𝑖

exceeds its seismic capacity 𝐶𝑖, that is,

𝑋𝑖 = 𝕀 (𝐶𝑖 ≤ 𝐷𝑖) = 𝕀 (𝑧𝑖 ≤ 0) , (8)

where 𝕀(⋅) denotes a binary indicator function that returns 1 if a
given equation/inequality holds, and 0 otherwise; and 𝑧𝑖≔ ln 𝐶𝑖 −
ln 𝐷𝑖 denotes the logarithmic safety margin [41]. We assume
that 𝐷𝑖 and 𝐶𝑖 are statistically independent of each other. To
quantify the intensity of earthquakes, various ground-motion
parameters, e.g., peak ground acceleration (PGA), peak ground
velocity (PGV), pseudo-spectral acceleration (PSA), can be used
[42–44]. In this paper, both 𝐷𝑖 and 𝐶𝑖 are quantified by PGA
values.

The seismic demand 𝐷𝑖 can be predicted by a ground motion
prediction equation [45, 46] such as

ln 𝐷𝑖 = 𝑓 (𝑀, 𝑅𝑖, 𝝀𝑖) + 𝜂 + 𝜀𝑖, (9)

where 𝑓(⋅) represents the attenuation relation of PGA, which
depends on the earthquake magnitude 𝑀, the distance 𝑅𝑖 from
the epicenter to the site 𝑖, and a set of other explanatory variables
𝝀𝑖; 𝜂 is the interevent residual with a zero mean and a standard
deviation of 𝜎𝜂; and 𝜀𝑖 is the intraevent residual with a zero
mean and a standard deviation of 𝜎𝜀. Although 𝜂 accounts for
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FIGURE 10 Bayesian network (BN) for seismic reliability analysis
of the example graph in Figure 6b.

the common randomness of seismic demand occurring within
an earthquake due to its inherent seismic properties, 𝜀𝑖 captures
the remaining randomness, which is mainly distributed spatially
[47]. Although 𝜂 and 𝜀𝑖 are assumed to be statistically independent
of each other, the spatial correlation between 𝜀𝑖 and 𝜀𝑗, 𝜌𝜀𝑖𝜀𝑗

,

is given as a function of the distance Δ𝑖𝑗 between sites 𝑖 and
𝑗. By introducing the total residual 𝑒𝑖≔𝜂 + 𝜀𝑖 with a zero mean
and a standard deviation of 𝜎𝑒𝑖

=
√

𝜎2
𝜂 + 𝜎2

𝜀 , one can derive the
correlation coefficient between ln 𝐷𝑖 and ln 𝐷𝑗, 𝜌ln 𝐷𝑖 ln 𝐷𝑗

, as

𝜌ln 𝐷𝑖 ln 𝐷𝑗
= 𝜌𝑒𝑖𝑒𝑗

=
Cov

[
𝑒𝑖, 𝑒𝑗

]
𝜎𝑒𝑖

𝜎𝑒𝑗

=
𝜎2

𝜂 + 𝜌𝜀𝑖𝜀𝑗

(
Δ𝑖𝑗

)
𝜎2

𝜀

𝜎2
𝜂 + 𝜎2

𝜀

. (10)

On the other hand, the seismic capacity 𝐶𝑖 is modeled by a
lognormal distribution with amedian of �̄�𝑖 and a lognormal stan-
dard deviation of 𝜁𝑖. Since each seismic capacity is determined
by the structural parameters (e.g., span length, column type)
or modeling parameters (e.g., material properties) [48], we can
assume that seismic capacities are statistically independent of
each other. The GMPE can be incorporated into the proposed BN
in Section 3.2.2, introducing random variables 𝐶𝑖 and 𝑒𝑖, which
respectively represent the capacity and residual of demand of an
Arc 𝑖. For example, the BN graph in Figure 6b can be extended as
illustrated in Figure 10.

4.2 Rao-Blackwellized Cross-Entropy-Based
Adaptive Importance Sampling

4.2.1 Rao-Blackwellization Technique for Seismic SRA

A vector of the correlated total residuals 𝒆 = {𝑒1, ⋯, 𝑒𝑁} (blue
nodes in Figure 10) is the main cause of large cliques in
the JT for a seismic SRA problem. When 𝒆 is sampled and
thereby conditioned in a BN graph, component events become

conditionally independent of each other, that is, (𝑋𝑖⊥𝑋𝑗|𝑒𝑖, 𝑒𝑗) for
𝑖 ≠ 𝑗. It is noted that the BN and JT are identical to those with
independent component failure events, except the probabilities of
𝑋𝑖 depending on 𝑒𝑖. Consequently, RB can make the seismic SRA
problems tractable in terms of 𝐶𝑂𝐿 by iteratively sampling 𝒆 and
evaluating the conditional system failure probability 𝑃(𝑆 = 0|𝒆)

using the JT constructed in Section 3 as

𝑃𝑓 = 𝐸𝑝(𝒆) [𝑃 (𝑆 = 0|𝒆)] ≅
1

𝑛𝑠

𝑛𝑠∑
𝑘=1

𝑃 (𝑆 = 0|𝒆𝑘) , (11)

where 𝐸𝑝(𝒆)[⋅] denotes the expectation with respect to the joint
probability density function (PDF) of 𝒆, 𝑝(𝒆); 𝑛𝑠 is the number
of sampled residual vectors; and 𝒆𝑘 is the kth sample vector
generated from 𝑝(𝒆).

However, despite the reduced computational complexity, there
are still difficulties in applying RB to a realistic seismic SRA.
Especially in large-scale systems, the method requires too many
samples as the residuals in 𝒆 are distributed in a high-dimensional
space. Even though message-passing in a JT can be performed
rapidly, the required number of samples overwhelms the effi-
ciency in this case. Therefore, standard MCS with full particles,
that is, sampling all random variables and identifying the connec-
tivity of sampled systems, can bemore efficient than the proposed
hybrid method [27]. To complement the sample inefficiency, in
the following sections, we adopt CE-AIS [21–26].

4.2.2 Review: Cross-Entropy-Based Adaptive
Importance Sampling

For importance sampling (IS), the original PDF 𝑝(𝒆) can be
replaced by an alternative sampling density function with a
parameter vector 𝒗, ℎ(𝒆; 𝒗). Then, the estimated 𝑃𝑓 is evaluated
as

𝑃𝑓 = ∫
[

𝑃 (𝑆 = 0|𝒆) 𝑝 (𝒆)

ℎ (𝒆; 𝒗)

]
ℎ (𝒆; 𝒗) 𝑑𝒆

= ∫ [𝑃 (𝑆 = 0|𝒆) 𝑊 (𝒆; 𝒗)] ℎ (𝒆; 𝒗) 𝑑𝒆

≅
1

𝑛𝑠

𝑛𝑠∑
𝑗=1

𝑃
(
𝑆 = 0|𝒆𝑗

)
𝑊

(
𝒆𝑗; 𝒗

)
, (12)

where𝑊(𝒆; 𝒗) = 𝑝(𝒆)∕ℎ(𝒆; 𝒗) is the likelihood ratio of the original
PDF to the alternative sampling PDF; and 𝒆𝑗 is the jth sample
vector generated from ℎ(𝒆; 𝒗). We note that, in the equation,
a typical binary limit-state function is replaced by 𝑃(𝑆 = 0|𝒆)

to facilitate RB applications. The variance of the estimate in
Equation (12) highly relies on ℎ(𝒆; 𝒗), whose optimal form 𝑝∗(𝒆)

minimizing the sampling variance is given as [49]

𝑝∗ (𝒆) =
|𝑃 (𝑆 = 0|𝒆)|𝑝 (𝒆)

∫ |𝑃 (𝑆 = 0|𝒆)|𝑝 (𝒆) 𝑑𝒆
=

𝑃 (𝑆 = 0|𝒆) 𝑝 (𝒆)

𝑃𝑓

. (13)

Although the exact solution of Equation (13) cannot be obtained
in practice because of the unknown denominator 𝑃𝑓, one can
obtain a near-optimal IS density by minimizing the difference
between two PDFs, 𝑝∗(𝒆) and ℎ(𝒆; 𝒗). Such difference can be

2395 of 2402

 10969845, 2025, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eqe.4362, W

iley O
nline L

ibrary on [10/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



quantified, for example, by the Kullback–Leibler (KL) divergence
(also called relative cross-entropy [50]), which is defined as

𝐷KL (𝑝∗ ∥ ℎ) = ∫ 𝑝∗ (𝒆) ln 𝑝∗ (𝒆) 𝑑𝒆 − ∫ 𝑝∗ (𝒆) ln ℎ (𝒆; 𝒗) 𝑑𝒆.

(14)
In CE-AIS, a near-optimal IS density ℎ(𝒆; 𝒗) is obtained by finding
the parameter vector 𝒗 that minimizes 𝐷KL(𝑝∗ ∥ ℎ). As the first
term of Equation (14) is invariant to 𝒗, this is equivalent to
maximizing the second term only. According to Equation (13), the
parameter vector 𝒗 of a near-optimal IS density is obtained as

𝒗 = argmin
𝒗′

𝐷KL (𝑝∗ ∥ ℎ)

= argmax
𝒗′ ∫ 𝑝∗ (𝒆) ln ℎ (𝒆; 𝒗′) 𝑑𝒆

= argmax
𝒗′ ∫ 𝑃 (𝑆 = 0|𝒆) ln ℎ (𝒆; 𝒗′) 𝑝 (𝒆) 𝑑𝒆 . (15)

In order to evaluate Equation (15) more efficiently, the parameter
vector 𝒘 of another alternative IS density is introduced as

𝒗 = argmax
𝒗′ ∫

[
𝑃 (𝑆 = 0|𝒆) ln ℎ (𝒆; 𝒗′) 𝑝 (𝒆)

ℎ (𝒆; 𝒘)

]
ℎ (𝒆; 𝒘) 𝑑𝒆

≅ argmax
𝒗′

𝑛𝑠∑
𝑗=1

𝑃
(
𝑆 = 0|𝒆𝑗

)
ln ℎ

(
𝒆𝑗; 𝒗

′
)

𝑊
(
𝒆𝑗; 𝒘

)
, (16)

where 𝒆𝑗 is the jth sampled residual vector generated from
ℎ(𝒆; 𝒘). In CE-AIS,𝒘 is generally set to the value of 𝒗 updated in
the previous iteration [21]. Then, the values of 𝒗 making ℎ(𝒆; 𝒗) a
near-optimal IS density can be obtained by setting the gradient of
the objective function in Equation (16) to be zero as

𝑛𝑠∑
𝑗=1

𝑃
(
𝑆 = 0|𝒆𝑗

)
𝑊

(
𝒆𝑗; 𝒘

)
∇𝒗 ln ℎ

(
𝒆𝑗; 𝒗

)
= 0. (17)

4.2.3 Proposed Adaptive Importance Sampling of RB
Particles for Large-Scale Systems

Various studies on CE-AIS [21, 23, 25] have shown that Gaussian
mixtures can effectively describe a near-optimal IS density, which
has the form of

ℎ (𝒆; 𝒗) =
𝑛GM∑
𝑘=1

𝜋𝑘𝑁 (𝒆|𝝁𝑘, 𝚺𝑘) , (18)

where 𝑛GM is the number of Gaussian distributions in the
mixture; 𝜋𝑘 is the probability that the kth Gaussian component
is selected, with

∑𝑛GM

𝑘=1
𝜋𝑘 = 1; 𝑁(𝒆|𝝁𝑘, 𝚺𝑘) is the joint PDF of the

Gaussian distribution with a mean vector 𝝁𝑘 and a covariance
matrix 𝚺𝑘; and 𝒗 = [𝜋1, 𝝁1, 𝚺1, … , 𝜋𝑛GM

, 𝝁𝑛GM
, 𝚺𝑛GM

] is given as
a parameter vector with (3 × 𝑛GM) components. By substituting
Equation (18) into Equation (17) and solving it analytically, one
can obtain the updating rule for each component as [50]

𝜋𝑘 =
∑𝑛GM

𝑗=1
𝑃
(
𝑆 = 0|𝒆𝑗

)
𝑊

(
𝒆𝑗; 𝒘

)
𝛾𝑗,𝑘∑𝑛GM

𝑗=1
𝑃
(
𝑆 = 0|𝒆𝑗

)
𝑊

(
𝒆𝑗; 𝒘

) , (19)

𝝁𝑘 =
∑𝑛GM

𝑗=1
𝑃
(
𝑆 = 0|𝒆𝑗

)
𝑊

(
𝒆𝑗; 𝒘

)
𝛾𝑗,𝑘𝒆𝑗∑𝑛GM

𝑗=1
𝑃
(
𝑆 = 0|𝒆𝑗

)
𝑊

(
𝒆𝑗; 𝒘

)
𝛾𝑗,𝑘

, (20)

𝚺𝑘 =
∑𝑛GM

𝑗=1
𝑃
(
𝑆 = 0|𝒆𝑗

)
𝑊

(
𝒆𝑗; 𝒘

)
𝛾𝑗,𝑘

(
𝒆𝑗 − 𝝁𝑘

) (
𝒆𝑗 − 𝝁𝑘

)T

∑𝑛GM

𝑗=1
𝑃
(
𝑆 = 0|𝒆𝑗

)
𝑊

(
𝒆𝑗; 𝒘

)
𝛾𝑗,𝑘

,

(21)

where 𝛾𝑗,𝑘 = 𝜋𝑘 𝑁(𝑥𝑗|𝝁𝑘, 𝚺𝑘)∕[
∑𝑛GM

𝑖=1
𝜋𝑖𝑁(𝑥𝑗|𝝁𝑖, 𝚺𝑖)].

However, when CE-AIS is applied to high-dimensional problems,
the covariance matrix 𝚺𝑘 computed in Equation (21) may not be
positive semidefinite due to numerical errors or limited number
of samples [51]. This requires additional steps, such as outlier
removal, which becomes more frequent as the dimensionality
increases. To prevent this issue, in this paper, all 𝚺𝑘 is set equal
to the covariance matrix of 𝒆, that is, 𝚺𝒆𝒆, and only 𝜋𝑘 and 𝝁𝑘

are updated using Equations (19) and (20). Then, the number
of components that need to be updated in 𝒗 becomes (2 × 𝑛GM).

This approach, called Rao-Blackwellized cross-entropy-based
semiadaptive importance sampling (RB-CE-SAIS), has a slower
convergence speed compared to the conventional CE-AIS. How-
ever, it can eliminate the likely risk of divergence of the covariance
matrix. The detailed process of the proposed RB-CE-SAIS is
described step by step as follows:

1. Initialization: Choose appropriate initial values of parameters
𝒗0, that is, 𝜋0

𝑘
, 𝝁0

𝑘
, and 𝚺0

𝑘
. For example, all 𝜋0

𝑘
are set to be

equal (i.e., 𝜋0
1 = 𝜋0

2 = ⋯ = 𝜋0
𝑛GM

= 1∕𝑛GM). For 𝝁0
𝑘
, from the

authors’ experience, it is recommended to set themean vector
𝝁0

𝑘
of the pre-sampling round to 𝑐𝑘 × [1, 1, … , 1], where 𝑐𝑘

is a random scalar value. This results in better convergence
compared to randomly setting 𝝁0

𝑘
. Finally, as mentioned

above, 𝚺0
𝑘
for all 𝑘 ∈ [1, 𝑛GM] is set to 𝚺𝒆𝒆. These parameter

values are used for both 𝒗 and 𝒘.

2. Sampling: Generate 𝑛𝑠 random samples of total residuals,
𝒆1, … , 𝒆𝑛GM

, using ℎ(𝒆; 𝒘). To this end, the individual Gaus-
sian densities for sampling 𝒆𝑗 are chosen proportional to each
𝜋𝑘. Then, a corresponding number of samples are generated
from every Gaussian density.

3. Convergence check: Estimate 𝑃𝑓 and calculate its coefficient
of variation (𝛿𝑃𝑓

). Note that it is desirable to calculate 𝛿𝑃𝑓
for

the full sample as well as when excluding the initial sample
set. This is because the initial sample set includes the output
where ℎ(𝒆; 𝒗0) is far from the optimal IS density. If at least one
𝛿𝑃𝑓

satisfies the convergence requirement (e.g., less than 5%),
the algorithm is terminated. Otherwise, proceed to Step 4.

4. Updating: Calculate the near-optimal IS density by applying
the updating rules in Equations (19) and (20) and return to
Step 2.

5 Numerical Examples

Three numerical examples are presented to demonstrate the
proposed algorithm in this section: (1) the example graph in
Figure 4, (2) a random graph with two cycles, and (3) the
Eastern Massachusetts (EMA) transportation network [52]. All
computational analyses were conducted on a personal computer
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equipped with an AMD Ryzen 5 3600 3.60 GHz CPU and 16GB
of RAM. According to empirical observations, the computer with
the given specifications can manage graphs with a maximum
clique size of nomore than 25 after RB, which coversmost lifeline
networks except for extreme topologies such as the complete
graph. The examples selected for this demonstration all conform
to this criterion after sampling the correlated total residuals.

In the examples, a structure (e.g., a bridge) is assumed to
be located at the center of each arc and determine the arc’s
connectivity. The seismic capacity parameters for all structures
are homogeneously assumed to be 0.98 for themedian �̄�𝑖 and 0.69
for the log standard deviation 𝜁𝑖. For the prediction of the mean
of the seismic demand, denoted by 𝑓(⋅) in Equation (9), and the
intraevent spatial correlation, denoted by 𝜌𝜀𝑖𝜀𝑗

in Equation (10),
the models proposed in [53] are adopted as follows, respectively.

𝑓 (𝑀𝑤, 𝑅𝑖) = −0.5265 − 0.0115

√
𝑅2

𝑖
+ 1.35

2

+ ln
(

𝑅2
𝑖
+ 1.35

2
)

[−0.3303 + 0.0599 (𝑀𝑤 − 4.5)] , (22)

𝜌𝜀𝑖𝜀𝑗

(
Δ𝑖𝑗

)
= exp

(
−0.27Δ0.40

𝑖𝑗

)
, (23)

where 𝑀𝑤 is the moment magnitude; and 𝑅𝑖 and Δ𝑖𝑗 are given in
km. The standard deviations of inter- and intraevent residuals, 𝜎𝜂

and 𝜎𝜀, are assumed to 0.265 and 0.502, respectively.

5.1 Example 1: Example Graph in Figure 4

Consider the example graph in Figure 4, which consists of four
vertices and five directional arcs. We consider an earthquake
scenario that has a moment magnitude of 𝑀𝑤 = 6.0 and the
epicenter located at distances of 19.09, 23.45, 22.25, 21.47, and
25.43 km from the centers of Arcs 1 through 5, respectively. Before
the seismic SRA, the maximum clique size of the graph is given
by 4, as shown in Figure 7a. Figure 7b shows that the maximum
clique for the seismic SRA (e.g., 10) is exceptionally within the
addressable range even without RB in this example, so that the
exact system failure probability and parameter sensitivities can
be evaluated without sampling.

In this example, since the residual vector is only five-dimensional,
that is, 𝒆 ∈ ℝ5, Rao-Blackwellized CE-AIS (RB-CE-AIS), which
updates 𝚺𝑘 using Equation (19) as well as 𝜋𝑘 and 𝝁𝑘, can be
performed inexpensively. Before comparing the performances of
different SRA methods, we first explore the optimal 𝑛GM for the
RB-CE-AIS and the RB-CE-SAIS. In the presampling round of
both methods, 𝑐𝑘 is drawn from a uniform distribution 𝑈(0.5, 1),

and the number of samples generated in each round, 𝑛𝑠, is set
to 500. The total number of samples required to achieve a target
𝛿𝑃𝑓

of 1% under varying 𝑛𝐺𝑀 values is detailed in Appendix A.1.
For the continuous objective function 𝑃(𝑆 = 0|𝒆) and the low
dimensionality of 𝒆, employing a single Gaussian (SG), that is,
𝑛GM = 1, proves to be more sample-efficient than using GM,
according to the results of both CE methods. It is noteworthy
that the optimal number of mixtures depends on the specific
problem. Especially for problems with multiple failure regions,
using an insufficient 𝑛GM may fail to fit the optimal IS density in

Equation (13) due to the lack of flexibility, thereby resulting in
biased failure probability estimates.

Figure 11a shows the failure probabilities with the 95% confidence
intervals estimated by RB-CE-AIS with SG, RB-CE-SAIS with
SG, the crude RB (RB without IS), and the crude Monte Carlo
simulation (MCS), plotted against the number of samples. These
estimates are compared to the exact system failure probability
obtained without RB, 𝑃𝑓,exact (black dashed line). Each method
continues to run until 𝛿𝑃𝑓

of the estimate reaches 1%, with all
methods providing almost identical estimates. Figure 11b details
the trajectories of 𝛿𝑃𝑓

for each method relative to the number
of samples. During the presampling round, 𝛿𝑃𝑓

of two adaptive
IS methods are similar, reflecting their shared initialization
setting. However, RB-CE-AIS achieves faster convergence than
RB-CE-SAIS, as it adaptively optimizes both 𝚺𝑘 and 𝝁𝑘 to more
effectively pinpoint the optimal design point. Despite the faster
convergence of RB-CE-AIS, RB-CE-SAIS still significantly
outperforms the crude RB or MCS; for the 1% 𝛿𝑃𝑓

, RB and
MCS require nearly 316 times and 5,621 times more samples,
respectively, than RB-CE-SAIS. Consequently, to achieve the
same level of 𝛿𝑃𝑓

, the required number of samples decreases in
the order of MCS, RB, RB-CE-SAIS, and RB-CE-AIS, reflecting
the varying efficiencies of these methods.

For efficient retrofitting of system components to enhance
reliability, we perform probabilistic inference to evaluate the
sensitivities of the system failure probability with respect to �̄�𝑖 for
𝑖 = 1, … , 5. It is assumed that the variation in 𝐶𝑖 per unit cost for
all homogenous components, Δ�̄�𝑖, is set at 0.02. Table 4 shows
the calculated derivations and upgrade worths, suggesting that
reinforcing 𝑎1 would be the most effective in improving system
reliability. Given the similar failure probabilities of components,
the result is driven by the topological properties of the network.
For instance, if Arc 1 with the highest 𝐼�̄�𝑖

fails (i.e., 𝑋1 = 0), the
OD connectivity totally relies on the path comprising Arcs 2 and
5. Conversely, the failure of Arc 3 with the lowest 𝐼�̄�𝑖

(i.e., 𝑋3 =
0) less critically affects the system, since there still remain two
separate alternative paths between the OD pair: via Arcs 1 and 4,
as well as Arcs 2 and 5.

5.2 Example 2: Cyclic Random Graph

Figure 12 shows a cyclic random graph with 12 vertices and 20
directional arcs that includes two cycles—a triangular one and a
square one (i.e., 𝑛cyc = 2, 𝑛1 = 3, and 𝑛2 = 4). The red concentric
circles indicate the location of the epicenter, and the earthquake
scenario has amomentmagnitude𝑀𝑤 = 4.5.The cyclic graph can
be decomposed into 20 directed acyclic subgraphs, each having
a maximum clique size of 8. By utilizing the proposed method,
the failure probability for each acyclic subgraph is calculated,
and the results are integrated using Equation (3) to estimate the
overall failure probability of the original graph. Given the high
dimensionality of the residual vector in this case, the update pro-
cess for 𝚺𝑘 in RB-CE-AIS becomes computationally burdensome
and often results in matrices that are not positive semidefinite.
Consequently, RB-CE-SAIS is exclusively used to determine the
required number of samples to achieve 𝛿𝑃𝑓

= 1%, as outlined
in Appendix A.2. Based on the results, 𝑛GM = 2 is selected, which
is also used to assess the performance of RB-CE-AIS.
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FIGURE 11 (a) Estimated failure probabilities of the graph in Figure 4; and (b) the coefficient of variation 𝛿𝑃𝑓
.

TABLE 4 Results of sensitivity analysis of example graph.

𝒊 1 2 3 4 5
𝜕𝑃𝑓

𝜕𝐶𝑖

−9.99 × 10
−4 −6.40 × 10

−4 −3.07 × 10
−5 −4.15 × 10

−4 −9.15 × 10
−4

𝐼�̄�𝑖
2.00 × 10

−5
1.28 × 10

−5
6.14 × 10

−7
8.31 × 10

−6
1.83 × 10

−5

FIGURE 12 Random directed graph with two cycles.

Figure 13 compares the results of seismic SRA and 𝛿𝑃𝑓
. In

Figure 13a, RB-CE-AIS initially produces a close match to the
proposed method in the early phase of analysis. However,
Figure 13b shows that the convergence rate of RB-CE-AIS is
significantly lower than that of RB-CE-SAIS after the first update
of 𝚺𝑘. Notably, beyond 3,000 samples, 𝛿𝑃𝑓

sharply increases,
and further sample generation becomes problematic when the
sample count exceeds about 7,000 due to the failure of 𝚺𝑘 to
remain positive semidefinite. By contrast, the proposed method
demonstrates the efficiency and stable convergence toward
𝛿𝑃𝑓

= 1% with only about 4,000 samples. This performance
is substantially more efficient than those of RB and MCS,
which require approximately 729,000 and 6.83 million samples,
respectively, to achieve similar levels of precision.

Then, the parameter sensitivity and the upgrade worth are
calculated to assess the importance of each component. In
this example, the values of Δ�̄�𝑖 by unit price are set to be
inversely proportional to the length of each arc (in km). The
results from this parameter sensitivity analysis are detailed in
Table 5. Arcs 1, 3, and 20, near Vertices O or D, are identified
as the components that yield the most significant improvement
in system reliability per unit reinforcement cost invested. Such
insights are crucial for prioritizing investment in the upgrade
of lifeline systems, ensuring that limited resources are allocated
in a manner that maximizes the return in terms of enhanced
reliability and reduced vulnerability.

5.3 Example 3: EMA Transportation Network

Figure 14a shows a preplanned lane reversal scenario of the EMA
transportationnetwork, comprising 129 unidirectional arcs and 74
vertices. The origin and destination are specified as the south and
north-east of Boston, respectively.We consider an earthquake sce-
nariowith amomentmagnitude𝑀𝑤 = 6.0.The coordinates of the
epicenter are given as 42◦24′ N and 70◦54′ W, respectively. Since
some arcs are independent of the OD connectivity, the network
can be simplified as shown inFigure 14b by eliminating them. The
simplification process reduces the number of directional arcs and
vertices to 85 and 47, respectively. Themaximumclique size, a key
factor influencing computational complexity, remains constant
at sixteen, suggesting that both are computationally manageable
with a computer configuration of 16GB of RAM. Although the
simplification does not drastically alter computational complex-
ity (e.g., 𝐶𝑂𝐿 only decreases from 112,344 to 78,208), it provides
significant computational advantages in performing sensitivity
analysis in that the number of target parameters has been reduced
from 129 to 85.
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FIGURE 13 (a) Estimated failure probabilities of the cyclic random graph; and (b) the coefficient of variation 𝛿𝑃𝑓
.

TABLE 5 Parameters and results of sensitivity analysis of the cyclic random graph.

𝒊 1 2 3 4 5 6 7

Δ�̄�𝑖 0.174 0.0519 0.174 0.0466 0.174 0.0636 0.0519
𝜕𝑃𝑓

𝜕𝐶𝑖

−2.18 × 10
−3 −6.04 × 10

−4 −7.74 × 10
−4 −4.01 × 10

−4 −2.56 × 10
−5 −9.11 × 10

−5 −8.90 × 10
−5

𝐼�̄�𝑖
3.78 × 10

−4
3.14 × 10

−5
1.34 × 10

−4
1.86 × 10

−5
4.45 × 10

−6
5.79 × 10

−6
4.62 × 10

−6

𝒊 8 9 10 11 12 13 14

Δ�̄�𝑖 0.174 0.0466 0.0636 0.174 0.0450 0.174 0.0899
𝜕𝑃𝑓

𝜕𝐶𝑖

−1.69 × 10
−6 −1.18 × 10

−4 −1.03 × 10
−3 −4.37 × 10

−5 −1.44 × 10
−4 −7.96 × 10

−5 −6.80 × 10
−5

𝐼�̄�𝑖
2.94 × 10

−7
5.51 × 10

−6
6.53 × 10

−5
7.60 × 10

−6
6.47 × 10

−6
1.38 × 10

−5
6.12 × 10

−6

𝒊 15 16 17 18 19 20

Δ�̄�𝑖 0.0519 0.0519 0.174 0.0519 0.174 0.174
𝜕𝑃𝑓

𝜕𝐶𝑖

−3.70 × 10
−5 −2.23 × 10

−4 −2.46 × 10
−5 −1.06 × 10

−5 −3.94 × 10
−5 −2.57 × 10

−4

𝐼�̄�𝑖
1.92 × 10

−6
1.16 × 10

−5
4.27 × 10

−6
5.51 × 10

−7
6.85 × 10

−6
4.46 × 10

−5

TABLE 6 Estimated failure probability and number of samples required for 𝛿𝑃𝑓
= 1% (without correlations).

Network types Original Simplified

Methods Proposed method MCS Proposed method MCS

�̂�𝑓 (×10
−5

) 1.652 1.667 1.652 1.660

Number of samples — 5.92 × 10
8 — 5.98 × 10

8

Computational time (s) 1.83 1.86 × 10
4 1.21 1.73 × 10

4

If component failure events are assumed to be statistically
independent (i.e., if the correlations between the total residuals of
seismic demands are ignored), the exact system failure probability
can be evaluated directly by the message-passing of the JT as
mentioned in Section 3.3.2. Table 6 presents the evaluated system
failure probability and the computational costs of the proposed
method with and without graph simplification, in comparison
to the results of MCS. The results confirm that simplification
only impacts the computational time of the proposed BN-based
method, while the exact failure probability remains constant. It is

noteworthy that while the proposed method evaluates the exact
system failure probability, the computational time is significantly
shorter than that required by MCS in both cases.

Conversely, when the correlations are not ignored, RB-CE-SAIS
with SG (i.e., 𝑛GM = 1) consistently delivers the best performance
in both the original and simplified network configurations (see
details in Appendix A.3). Table 7 presents a summary of the
results from eachmethod, focusing on the failure probability esti-
mates and the number of samples required to achieve 𝛿𝑃𝑓

= 1%.
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FIGURE 14 (a) Eastern Massachusetts (EMA) highway network; and (b) simplified one.

TABLE 7 Estimated failure probability and number of samples required for 𝛿𝑃𝑓
= 1% (with correlations).

Network types Original Simplified

Methods RB-CE-SAIS RB MCS RB-CE-SAIS RB MCS

�̂�𝑓 (×10
−4

) 1.476 1.486 1.477 1.491 1.451 1.480

Number of samples 1.54 × 10
4

1.90 × 10
6

6.77 × 10
7

8.91 × 10
3

1.94 × 10
6

6.76 × 10
7

FIGURE 15 Eastern Massachusetts (EMA) network highlighting
the upgrade worth of each arc.

Across both network configurations, RB-CE-SAIS demonstrates
significantly superior sample efficiency when compared to the
crude RB and MCS. Moreover, it is noteworthy that graph sim-
plification has no impact on the sample efficiency of RB or MCS,
which is only contingent on the target probability. Conversely,
the proposed RB-CE-SAIS method benefits markedly from
the graph simplification. The decreased dimensionality from
𝒆 ∈ ℝ129 to 𝒆 ∈ ℝ85 boosts a more efficient identification of near-
optimal IS PDFs, in turn enhancing the sample efficiency of RB-
CE-SAIS.

In the sensitivity analysis of the simplified network, the values
of Δ�̄�𝑖 by unit price for each arc are assumed to be identical to
0.01. This assumption simplifies the comparison of each upgrade
worth by focusing solely on the derivatives 𝜕𝑃𝑓∕𝜕�̄�𝑖. The analysis
results are illustrated in Figure 15, in which the arcs with the

highest upgrade worth are prominently highlighted in red. From
a topological perspective, Arcs 1 and 4 are located near the vertex
D, and the surrounding arcs converge toward them. This makes
these arcs highly sensitive to the system failure probability with
respect to �̄�𝑖 , despite their relative distance from the seismic
epicenter. Meanwhile, the high sensitivity of Arc 13 can be
primarily attributed to its geographical placement closer to the
epicenter, making it prone to fail.

6 Conclusions

This paper introduces a novel BN-based method for SRA of the
connectivity of directed graphs, which employs the JT algorithm
and dual graph representation. The integration of graph theory
and BN approach enables a systematic automation of BN mod-
eling for SRA, thereby evaluating the system failure probability
analytically especially when component events are statistically
independent. To extend the proposed framework to a large-
scale network with dependent component events, represented
by seismic hazards, this study proposes incorporating IS and
RB into the proposed method. In addition, we demonstrate how
sensitivity analysis can be performed by the proposed framework
and propose several preprocessing procedures to relax constraints
on the addressable systems.

The proposed method offers three key advantages: (1) the
method can be implemented by existing BN algorithms available
in general-purpose software programs; (2) a useful metric is
provided to quantify the complexity of a network system from
the perspective of SRA; and (3) SRA of large-scale network
systems can be efficiently performed to evaluate system failure
probability or parameter sensitivity. Three numerical examples
under seismic scenarios highlight the accuracy and efficiency of
the proposed method compared to existing methods.
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The BN-based framework proposed in this paper is highly exten-
sible, and in particular, the computational complexity quantifi-
cation and probabilistic inference (including sensitivity analysis)
methods can be applied to other fields, including structural
reliability and earthquake engineering. In futurework, additional
sampling may be introduced to promote wide application of
the proposed method to local road networks in dense areas
as well as highway lane reversal scenarios and to mitigate the
computational complexity of maximum cliques, which is the bot-
tleneck of SRA in the proposed framework. Potential extensions
of the research topic include (1) analyzing the connectivity of
multiple OD pairs, and (2) developing the proposed approach for
maximum flow analysis or average travel time with multistate
components beyond system connectivity for a comprehensive
understanding of network performance.
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Appendix A: Detailed Results of Numerical Examples in Section 5

TABLE A.1 Number of samples required to achieve 𝛿𝑃𝑓
= 1% in

Example 1.

Number of Gaussian
mixtures, 𝒏𝐆𝐌 RB-CE-AIS RB-CE-SAIS

1 1,595 2,985
2 1,954 3,718
5 2,196 3,866
10 2,179 3,324
50 2,259 3,370
100 2,269 3,122

TABLE A.2 Number of samples required to achieve 𝛿𝑃𝑓
= 1% in

Example 2.

Number of Gaussian mixtures, 𝒏𝐆𝐌 RB-CE-SAIS

1 3,970
2 3,728
5 4,158
10 3,993
50 3,860
100 4,032

TABLE A.3 Number of samples required to achieve 𝛿𝑃𝑓
= 1% for

the original and simplified EMA networks.

Number of Gaussian
mixtures, 𝒏𝐆𝐌

Original
network

Simplified
network

1 15,407 8,907
2 24,673 12,483
5 21,110 9,195
10 16,674 10,250
50 19,020 11,167
100 42,090 11,309
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