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Abstract: For efficient risk assessment of lifeline systems against earthquakes, various empirical and 

analytical methods have been developed to evaluate the seismic fragility curves of individual structures. 

However, network reliability, such as origin-destination connectivity after an earthquake, can be more critical 

for community-level safety. Therefore, beyond the fragility curves of structures, this study proposes a variance 

reduction sampling framework for fragility curves of network connectivity based on subset simulation. Network 

reliability analysis faces inherent challenges from complex network topologies, interdependencies among 

seismic uncertainties, and low-probability network failures. Although various sampling methods, including the 

crude Monte Carlo simulation (MCS), have been adopted with high flexibility and scalability, they are highly 

inefficient for sparse network failure events. To overcome this limitation, we reformulate the binary limit-state 

function used for network connectivity analysis into more informative continuous limit-state functions. The 

proposed limit-state functions quantify how close each sample is to a network failure, thereby facilitating the 

construction of intermediate relaxed failure events. A single implementation of Hamiltonian Monte Carlo-based 

subset simulation (HMC-SS) can generate the network fragility curve by configuring each intermediate failure 

domain as a network failure event under a given earthquake intensity. A numerical example demonstrates that 

the proposed framework can accurately and efficiently evaluate network fragility curves. 

1 Introduction 

Lifeline networks, such as transportation, gas, and electricity systems, are the critical backbone of modern 

society. Their significance is particularly noticeable in the post-hazard stage because emergency assessment, 

evacuation, lifesaving, and repair operations rely on lifeline networks' functionality. Therefore, it is essential to 

assess the network reliability to construct and maintain resilient lifeline networks against seismic hazards. To 

this end, this study aims to develop an efficient sampling method to assess not only the seismic reliability in 

terms of two-terminal reliability, but also the network fragility under various earthquake magnitudes. 

In large-scale networks, network reliability analysis can be computationally challenging or even infeasible due 

to the high computation cost, intricate network topology, or interdependencies between components. To 

reduce the computational challenge known as “combinatorial explosion,” various simulation-based 

approaches, including the crude Monte Carlo simulation (MCS), are extensively used owing to their broad 

applicability and flexibility. However, the crude MCS has a slow convergence rate of 𝒪(𝑁−1/2), where 𝑁 is the 

number of random sample points. This slow convergence rate may lead to a prohibitive computation cost in 

rare event simulations, such as the failures of lifeline networks. To accelerate the probability estimation by 

sampling in critical regions with higher probabilities, one can introduce subset simulation (SS, Au & Beck 2001), 
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which relaxes the target failure event into nested intermediate failure events, effectively estimating low 

probabilities with relatively small samples. An essential ingredient of SS is ranking sample points according to 

their limit-state function values so intermediate failure events can be formulated. 

However, most network limit-state functions in network reliability analyses have binary or multi-state outputs. 

This feature poses significant challenges for SS because the sample points outside the failure domain have 

the same limit-state function value; consequently, the algorithm cannot move toward the failure domain as 

there is no information to guide the sampling in the correct direction. To solve this problem, this study proposes 

piecewise continuous reformulations of the binary limit-state function representing network disconnection. 

These new limit-state functions enable the construction of relaxed, intermediate failure events, readily usable 

in SS. Since the reformulations involve trade-offs in accuracy and efficiency, one can select the limit-state 

function that aligns better with the analysis goals. Another main contribution of this paper is an alternative 

interpretation of the intermediate failure domains in the context of subset simulation-based network fragility 

analysis. By discovering an implicit connection between intermediate failure events and earthquake 

magnitude, a single simulation of SS can generate the entire network fragility curve. 

The paper is organized as follows. Section 2 provides an overview of the seismic network reliability analysis. 

Section 3 briefly reviews SS, develops informative network limit-state functions, and proposes a computational 

framework for network fragility analysis. In Section 4, a numerical example demonstrates the performance of 

the proposed method. Finally, Section 5 summarizes the paper and provides future research directions. 

2 Seismic network reliability analysis 

2.1 Failure probabilities of networks components 

For seismic network reliability analysis, one should first assess the seismic risk of individual 

components/structures in a network. The seismic failure of a component is defined as the event that the 

seismic demand exceeds the seismic capacity, both of which are uncertain. The Bernoulli variable 𝐵𝑖 

representing the failure event of component 𝑖, which represents the event when the seismic demand 𝐷𝑖 

exceeds the seismic capacity 𝐶𝑖 , is defined as 

 𝐵𝑖 = 𝕝(𝐶𝑖 ≤ 𝐷𝑖) = 𝕝(𝑧𝑖 ≤ 0), (1) 

where 𝕝(∙) denotes a binary indicator function that returns 1 if the given inequality holds, and 0 otherwise; and 

𝑧𝑖 = ln 𝐶𝑖 − ln 𝐷𝑖 denotes the logarithmic safety margin (Der Kiureghian 2022). The seismic demand 𝐷𝑖 and the 

seismic capacity 𝐶𝑖  are assumed to be statistically independent, and both are modeled as lognormal 

distributions. Then, 𝑧𝑖 follows a normal distribution with a mean 𝜇𝑧𝑖
= ln 𝐶�̅� − ln �̅�𝑖 and a variance 𝜎𝑧𝑖

2 = 𝜁𝑖
2 +

𝜎𝜂
2 + 𝜎𝜀

2 , where 𝐶�̅� and �̅�𝑖 are the medians of 𝐶𝑖 and 𝐷𝑖 , respectively, 𝜁𝑖 is the lognormal standard deviation of 

𝐶𝑖 , and σ𝜂 and σ𝜀𝑖
 are the standard deviations of inter- and intra-event residuals of 𝐷𝑖 , respectively.Then, the 

joint failure probability of components numbered from 1 to 𝑁 is given as  

 
𝑃 (⋂{𝐵𝑖 = 1}

𝑁

𝑖=1

) = 𝑃 [⋂{𝑧𝑖 ≤ 0}

𝑁

𝑖=1

] = Φ𝑁(−𝜷, 𝑹𝒛𝒛), (2) 

where Φ𝑁(∙,∙)  is the 𝑁 -variate zero-mean, unit variance normal cumulative distribution function; 𝜷 =

[𝛽1 , … , 𝛽𝑁]T is the vector of reliability indices, whose component is defined as 𝛽𝑖 =
𝜇𝑧𝑖

𝜎𝑧𝑖

; 𝑹𝒛𝒛 = [𝜌𝑧𝑖𝑧𝑗
]

𝑖,𝑗∈[1,𝑁]
 is 

the 𝑁 × 𝑁 correlation matrix, which is equivalent to the covariance matrix in the present context; and 𝜌𝑧𝑖𝑧𝑗
 is 

the correlation coefficient between 𝑧𝑖  and 𝑧𝑗 .  Lee and Song (2021) analytically derived the correlation 

coefficient 𝜌𝑧𝑖𝑧𝑗
 as 

 
𝜌𝑧𝑖𝑧𝑗

=
𝜁𝑖𝜁𝑗𝛿𝑖𝑗 + 𝜎𝜂

2 + 𝜎𝜀
2𝜌𝜀𝑖𝜀𝑗

√𝜁𝑖
2 + 𝜎𝜂

2 + 𝜎𝜀
2√𝜁𝑗

2 + 𝜎𝜂
2 + 𝜎𝜀

2

, 
(3) 

where 𝛿𝑖𝑗 is the Kronecker delta, which is 1 when 𝑖 = 𝑗, and 0 otherwise; and 𝜌𝜀𝑖𝜀𝑗
 is the correlation coefficients 

between 𝜀𝑖 and 𝜀𝑗 . 
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2.2 Network reliability analysis 

A lifeline network consists of line-type components, such as pipelines and roads, and node-type components, 

such as stations and bridges. The network can be described by a graph 𝐺(𝑽, 𝑬), where 𝑽 denotes the set of 

nodes (or vertices) representing both types of components, and 𝑬 is the set of links (or edges) indicating the 

conceptual connectivity between nodes. That is, it is assumed that all links in set 𝑬 are perfectly reliable. This 

assumption will not cause error in the network reliability analysis because nodes represent the physical entities. 

The above assumption still holds for networks with link failures to equivalent networks with node failures. 

Consider a network state vector 𝒛 = [𝑧1 , … , 𝑧𝑁] , denoting a vector of the logarithmic safety margins of 

components, where 𝑁 = |𝑽|  is the number of nodes (i.e., the total number of node-type and line-type 

components) in the network of interest. The network reliability problem computes the network failure probability 

𝑃𝑓 by 𝑁-fold integral in the space of the network state vector, i.e., 

 
𝑃𝑓 = ∫ 𝑓𝒁(𝒛)𝑑𝒛

 

ℱ

= ∫ 𝕝(𝐺(𝒛) ≤ 0)𝑓𝒁(𝒛)𝑑𝒛

 

ℝ𝑁

, (4) 

where ℱ = {𝐺(𝒛) ≤ 0} is the failure domain for the network reliability problem, such as OD connectivity; 𝐺(𝒛) ∈

ℝ is the network limit-state function; and 𝑓𝒁(𝒛) is the joint probability density function of the network state vector 

𝒛. For the connectivity between an OD pair, the network limit-state function, 𝐺𝑂𝐷(𝒛), is defined as the binary 

limit-state function as 

 
𝐺OD

Bi (𝒛) = {
1, if the OD pair is connected in 𝒛,
0, otherwise,

 (5) 

which depends on the network topology. For example, in a series system, only the joint survival of all 

components guarantees connectivity. In contrast, a parallel system will fail if and only if all components fail. 

However, reliability problems for general networks are known to be NP-hard problems (Rosenthal 1977); there 

is no polynomial-time algorithm to find all component state combinations that express OD connectivity. That 

is, reliability analyses of large-scale networks often face challenges in (1) exploration of the failure domain in 

2𝑁 component state combinations, and (2) fast and accurate computation of probability in the high-dimensional 

space ℝ𝑁 . Therefore, non-simulation-based approaches can be inappropriate for large-scale networks. 

3 Subset simulation for network reliability analysis 

Subset simulation (SS, Au & Beck 2001) is one of the most widely used variance-reduction sampling 

approaches. In SS, the failure domain of interest, ℱ, is represented by 𝑚 nested intermediate failure domains, 

ℱ1 ⊃ ℱ2 ⊃ ⋯ ⊃ ℱ𝑚 = ℱ. The failure probability 𝑃𝑓 is expressed as the product of the conditional probabilities 

𝑃(ℱ𝑘|ℱ𝑘−1), i.e., 

 
𝑃𝑓 = ∏ 𝑃(ℱ𝑘|ℱ𝑘−1)

𝑚

𝑘=1

≅
𝑝0

𝑚−1

𝑛
∑ 𝕝(𝒛(𝑗) ∈ ℱ|ℱ𝑚−1)

𝑛

𝑗=1

, (6) 

where ℱ0 = ℝ𝑁 denotes the initial null failure domain. By setting each (except the last) conditional probability 

identical to a constant 𝑝0, the intermediate failure domains ℱ𝑘 , 𝑘 = 1, … , 𝑚 − 1, are adaptively determined by 

the 𝑝0 quantile of limit-state function values associated with sample points in ℱ𝑘−1; 𝑛 is the number of sample 

points generated in each intermediate failure domain; and 𝒛(𝑗) is the 𝑗𝑡ℎ  sample point. Au and Beck (2001) 

proposed setting 𝑝0 = 0.1. While generating independent and identically distributed samples from the initial 

null failure domain is typically feasible and straightforward, it becomes challenging for the intermediate failure 

domains ℱ𝑘−1, 𝑘 ≥ 2. To this end, Markov Chain Monte Carlo (MCMC) methods can be utilized. Using an 

MCMC method, each conditional probability 𝑃(ℱ𝑘|ℱ𝑘−1)  and the failure probability estimation 𝑃𝑓  can be 

calculated. 

SS is particularly efficient for rare events because the number of samples required for a single run of SS is 

𝑛𝑆𝑆 ∝ |log 𝑃𝑓|, while the crude MCS requires 𝑛𝑀𝐶𝑆 ∝ 1/𝑃𝑓 simulations. MCMC methods have a critical impact 

on the performance of SS; ideally, the MCMC sample should show limited random walk behavior and achieve 

rapid mixing. In this work, we adopt the Hamiltonian Monte Carlo-based subset simulation (HMC-SS), an 

efficient variant of SS leveraging the desirable properties of HMC (Wang et al. 2019). 
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3.1 Informative network limit-state function for subset simulation 

The OD connectivity is typically represented by the binary limit-state function in Eq. (5). This property is a 

major obstacle to using SS in network reliability analysis. Provided with a binary function, the 𝑝0 quantile of the 

samples is chosen to be either 0 or 1 in each intermediate domain, so SS may not identify the failure domain 

effectively. To address this problem, the binary network limit-state function 𝐺OD
Bi (𝒛) should be reformulated as 

a multi-state or continuous function. In this study, we propose an informative network limit-state function, which 

encodes the same failure domain as the original binary function but provides additional information on the 

direction and distance to the failure domain. To this end, we introduce a path connecting an OD pair. Then, 

the network limit-state function is defined as follows: 

 

𝐺OD
Pro(𝒛) = {

min
𝑖∈𝐏

𝑧𝑖

𝑛P
, if the OD pair is connected in 𝒛,

0, otherwise,

 (7) 

where 𝐏 denotes the set of nodes on the path with positive 𝑧𝑖 ; and 𝑛P is the number of nodes in 𝐏. The limit-

state function proposed in Eq. (7) stems from the observation that (1) the network survives if there are one 

more path between the OD pair, and (2) the larger 𝑛P is, the more likely the path tends to fail. Because of the 

denominator 𝑛P,  the proposed function is piecewise rather than globally continuous; there may be a 

discontinuity along the boundaries where 𝐏 changes. To find a path, Dijkstra’s algorithm or the breadth-first 

search (BFS) can be used. Let the 𝑘𝑡ℎ intermediate failure domain ℱ𝑘 be {𝐺OD
Pro(𝒛) ≤ 𝑔𝑘}. Then, according to 

Eq. (6), the failure probability 𝑃𝑓 is expressed as the product of conditional probabilities as 

 
�̂�𝑓 ≅

𝑝0
𝑚−1

𝑛
∑ 𝕝(𝐺OD

Pro(𝒛(𝑗)) ≤ 𝑔𝑚|𝐺OD
Pro(𝒛(𝑗)) ≤ 𝑔𝑚−1)

𝑛

𝑗=1

, (8) 

where 𝑔1 > ⋯ > 𝑔𝑚 = 0 denote intermediate thresholds; 𝑔0 = ∞ denotes the initial failure threshold; and 𝒛(𝑗) 

is the state vector of the components in the 𝑗𝑡ℎ  network-state sample point. Detailed descriptions on 𝐺OD
Pro can 

be found in Lee et al. (2023). 

3.2 Framework for network seismic fragility analysis 

On top of estimating the network failure probability for one earthquake magnitude, the proposed informative 

network limit-state functions also enable SS to evaluate network fragility curves. In particular, the intermediate 

failure domains in SS are now redefined as the failure domain under each 𝑀𝑤 ,  and their probabilities 

correspond to discretized points on a fragility curve, with the x-axis representing the magnitude and the y-axis 

describing the network failure probability. To this end, this section introduces the process of configuring the 

intermediate failure domains and generating the network fragility curve. 

3.2.1 Configuration of the intermediate failure domains 

Unlike individual structures, lifeline networks are distributed in a large area. Since IMs are measured differently 

across all sites for the same earthquake, it is considered more appropriate to use 𝑀𝑤 as the x-axis in the 

network fragility curves. Consider the case where 𝑀𝑤 changes, while the epicenter remains constant. In that 

case, 𝒛  is represented as a function of 𝑀𝑤 , i.e., 𝒛(𝑀𝑤). While seismic demands depend on 𝑀𝑤 , seismic 

capacities as well as the inter- and intra-event residuals remain unaltered regardless of 𝑀𝑤 . In other words, as 

𝑀𝑤 varies, the covariance matrix 𝑹𝒛𝒛 = [𝜌𝑧𝑖𝑧𝑗
]

𝑁×𝑁
 remains constant, and only the mean of 𝒛(𝑀𝑤) changes.  

Let 𝐹𝑘 be the network failure domain under an earthquake with the 𝑘𝑡ℎ moment magnitude 𝑀𝑤
𝑘 , where 𝑀𝑤

1 >

𝑀𝑤
2 > ⋯ > 𝑀𝑤

𝑚. Owing to the constant 𝑹𝒛𝒛 , all distributions of 𝒛(𝑀𝑤
𝑘 ) can be matched to that of 𝒛(𝑀𝑤

1 ) by a 

linear transformation. Note that, unlike the conventional subset simulation where a relaxation parameter can 

be explicitly introduced to yield {𝐺(𝒛(𝑀𝑤
𝑘 )) ≤ 𝑔𝑘}, the network limit-state function 𝐺𝑂𝐷 is nonlinear and a “𝑔𝑘” 

term cannot be factorized out of 𝐺𝑂𝐷(⋅). Instead, we define 𝐹𝑘 as 

 𝐹𝑘 = {𝐺𝑂𝐷(𝒛(𝑀𝑤
𝑘 )) ≤ 0} = {𝐺𝑂𝐷(𝒛(𝑀𝑤

1 ) + 𝒛(𝑀𝑤
𝑘 ) − 𝒛(𝑀𝑤

1 )) ≤ 0}, (9) 

where 𝑘 = 1,2, … , 𝑚. Here, we enforce a constant magnitude decrement, i.e., Δ𝑀𝑤 = 𝑀𝑤
𝑘+1 − 𝑀𝑤

𝑘  is set to a 

negative constant. Then, Eq. (9) presents an interpretable form of the intermediate failure domains for a 
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“specialized” SS for the network fragility, an extension of the conventional SS with a relaxation parameter 

introduced into the limit-state function.  

3.2.2 Generation of network fragility curves 

Using Eq. (9), a single implementation of the specialized SS can yield the network failure probabilities at 

multiple values of 𝑀𝑤, i.e., the fragility curve. This practice requires significantly fewer samples than the crude 

MCS or repeatedly applying SS for each 𝑀𝑤 .  If a conditional probability 𝑃(ℱ𝑖|ℱ𝑖−1)  for a pre-specified 

magnitude decrement is too small, similar to the conventional SS, we can adaptively reduce the decrement of 

𝑀𝑤 so that the conditional probability becomes large, i.e., building an adaptive mesh refinement for the fragility 

curve. 

4 Numerical example 

One numerical example is considered to demonstrate the efficiency and accuracy of the proposed network 

limit-state function and the method for network fragility evaluation: two-terminal reliability analysis on a 

hypothetical network in Figure 1. In each of these examples, the seismic capacity parameters for the 

components or bridges are fixed at 0.98 for the median 𝐶�̅� , and 0.69 for the log-standard deviation 𝜁𝑖 . To 

compare the proposed method with the crude MCS, the parameters for HMC-SS are set to 𝑛 = 1,000, 𝑝0 =

0.1, 𝑡𝑓 = 𝜋/4, and 𝛼 = 0 (for details on the last two parameters, see Wang et al. (2019)). All computations in 

this section are performed using MATLAB® on an 8-core MacBook Air (2022) with 8 GB of RAM. 

 

Figure 1. Hypothetical network (Lee & Song 2021). 

Consider the hypothetical network in Figure 1 with 42 bridges. To analyze the two-terminal reliability, the HMC-

SS using 𝐺OD
Pro is conducted 500 times. Two kinds of paths are tested and compared with each other: (1) the 

most reliable path, 𝐺OD
RP, and (2) the shortest path, 𝐺OD

SP . The reference MCS solution is obtained through crude 

MCS with 1% coefficient of variation (𝑐. 𝑜. 𝑣.). Table 1 confirms the accuracy of the HMC-SS using the proposed 

network limit-state functions; regardless of the used functions, the proposed method shows the high accuracy 

compared to the MCS results. 

Table 1. Two-terminal reliability analysis results for the hypothetical network.  
 

𝑴𝒘 𝑮𝐎𝐃
𝐑𝐏  𝑮𝐎𝐃

𝐒𝐏  MCS 𝑷𝒇 

7.0 5.14 × 10−2 5.15 × 10−2 5.08 × 10−2 

6.0 1.39 × 10−2 1.41 × 10−2 1.37 × 10−2 

5.0 2.99 × 10−3 3.01 × 10−3 3.02 × 10−3 

4.0 5.46 × 10−4 5.26 × 10−4 5.39 × 10−4 

3.0 7.94 × 10−5 7.48 × 10−5 7.92 × 10−5 
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Figure 2. (a) 𝑒𝑓𝑓-𝑀𝑤; and (b) 𝑡𝑠𝑠-𝑀𝑤 curves on hypothetical network. 

 

Figure 3. Seismic network fragility curves obtained by a single implementation of specialized HMC-SS. 

Figures 2(a) and 2(b) compare the efficiency of the proposed network limit-state functions in terms of 𝑒𝑓𝑓 =

𝑐. 𝑜. 𝑣.× √𝑁𝐺 , where 𝑁𝐺 represents the number of limit-state function evaluations; and the computation time 𝑡𝑠𝑠 

while varying 𝑀𝑤 . 𝐺OD
RP-based HMC-SS is more accurate owing to low 𝑐. 𝑜. 𝑣. of the estimated probabilities, 

whereas 𝐺OD
SP -based HMC-SS takes a much shorter time. The speedup comes from the efficient shortest path 

search using BFS, which is considerably faster than the Dijkstra algorithm. In general, regardless of the limit-

state function, as 𝑀𝑤 decreases, the network failure probabilities decrease, and 𝑁𝐺 and 𝑡𝑠𝑠 increase. Then, we 

evaluate the seismic fragility curve using the framework proposed in Section 3.2. In a single implementation 

of the specialized HMC-SS, 𝐺OD
RP is adopted for its high accuracy, even though it takes longer computation time 

than using 𝐺OD
SP . The range of 𝑀𝑤  is set to 3.0 ≤ 𝑀𝑤 ≤ 9.0 with Δ𝑀𝑤 = 0.5, and the specialized HMC-SS is 

repeated 250 times to produce an estimate of the confidence interval. Figure 3 shows the generated seismic 

fragility curve, compared to the MCS results. The specialized HMC-SS estimates the fragility curve accurately 

using 11,800 limit-state function evaluations, which is only 38.06% of those required in a repeated simulation 

of HMC-SS for each 𝑀𝑤 . 

5 Conclusions 

In this study, informative piecewise continuous limit-state functions are proposed for two-terminal reliability 

analysis of lifeline networks, thus enabling the application of SS. The first limit-state function quantifies the 

vulnerability of the most reliable path between the origin and destination nodes, while the other uses the 

shortest path. In addition, a specialized SS is developed to generate network-level fragility curves by 
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connecting intermediate failure events to the earthquake magnitude. As a result, a single run of the specialized 

SS can generate the network fragility curve. Future studies can extend the proposed framework to evaluate 

more realistic network reliability, such as network flow capacity. 
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